题目大意:有一系列的点,这些点中假如欧氏距离小于r就认为是同一类,注意A和B同一类,B和C同一类,那么A和C就是同一类。
现在要在点集中铺路,在一类中我们需要铺路使得类中的点都连通,在不同类也需要通过路来把它们全部连起来,使得类和类之间能够互相连接。约束:注意我们总的铺路的距离要尽可能小。
最后输出铺路的距离。
思路:首先在类中最小生成树,然后不同类之间也要做一个最小生成树,注意在不同类别中做最小生成树的时候,那一个类别是作为一个节点(在这里WA了一发 555)。注意:在这里一个类就是题意中的一个state.
AC代码:
#include <bits/stdc++.h>
#define MAXN 1010
#define UNVISITED 0
#define VISITED 1
using namespace std;
double dist[MAXN][MAXN];
int N;
int R;
int flag[MAXN];
vector<int> ConPoi;
typedef vector<int > vi;
class Disjoint_Union_set {
private:
vi p, rank, setSize;
int numSets;
public:
Disjoint_Union_set(int N) {
p.assign(N, 0); rank.assign(N, 1); setSize.assign(N, 1);
numSets = N; for (int i = 0; i<N; i++)p[i] = i;
}
int find_set(int i) { return p[i] == i ? i : p[i] = find_set(p[i]); } //find the representative element(root of the tree)
bool is_same_set(int i, int j) {
//1 for same set
return find_set(i) == find_set(j);
}
void union_set(int i, int j) {
if (!is_same_set(i, j)) {
int x = find_set(i); int y = find_set(j);
numSets--;
if (rank[x] < rank[y]) {
p[x] = y;
setSize[y] += setSize[x];
}
else {
p[y] = x;
setSize[x] += setSize[y];
if (rank[x] == rank[y])rank[x] ++;
}
}
}
int numDisjointsets() {
return numSets;
}
int sizeOfSet(int i) {
return setSize[find_set(i)];
}
};
void DFS(int u) {
if (flag[u] != UNVISITED)return;
ConPoi.push_back(u);
flag[u] = VISITED;
for (int nx = 0; nx<N; nx++) {
if (nx == u)continue;
if (dist[u][nx]>R)continue;
DFS(nx);
}
}
bool cmp(pair<double, pair<int, int>> &fir, pair<double, pair<int, int>> &las) {
if (fir.first < las.first)return true;
else return false;
}
int main() {
int cases;
cin >> cases;
for (int ca = 0; ca<cases; ca++) {
int n; int r;
cin >> n >> r;
N = n;
R = r;
vector<pair<int, int>> poi;
for (int i = 0; i<n; i++) {
int x, y;
cin >> x >> y;
poi.push_back(make_pair(x, y));
}
//cerr<<"read complete"<<endl;
for (int i = 0; i<n - 1; i++) {
int orix = poi[i].first;
int oriy = poi[i].second;
for (int j = i + 1; j<n; j++) {
int nxx = poi[j].first;
int nxy = poi[j].second;
dist[i][j] = dist[j][i] = sqrt(pow((float)(orix - nxx), 2) + pow((float(oriy - nxy)), 2));
}
}
memset(flag, UNVISITED, sizeof(flag));
//cerr<<"dist matrix complete "<<endl;
vector<vector<int>> vecCon;
for (int i = 0; i<n; i++) {
if (flag[i] != UNVISITED)continue;
ConPoi.erase(ConPoi.begin(), ConPoi.end());
DFS(i);
vecCon.push_back(ConPoi);
}
//cerr<<'D'<<endl;
double kruskalSum = 0;
for (int i = 0; i<(int)vecCon.size(); i++) {
vector<int> tmp = vecCon[i];
vector<pair<double, pair<int, int> > > edges;
for (int j = 0; j<(int)tmp.size() - 1; j++) {
for (int z = j + 1; z<(int)tmp.size(); z++) {
double wei = dist[tmp[j]][tmp[z]];
pair<int, int> p;
p = make_pair(tmp[j], tmp[z]);
pair<double, pair<int, int>> p2;
p2.first = wei;
p2.second = p;
edges.push_back(p2);
}
}
Disjoint_Union_set DUSet(N + 1);
sort(edges.begin(), edges.end(), cmp);
for (int j = 0; j<(int)edges.size(); j++) {
int nxx = edges[j].second.first;
int nxy = edges[j].second.second;
double wei = edges[j].first;
if (!DUSet.is_same_set(nxx, nxy)) {
DUSet.union_set(nxx, nxy);
kruskalSum += wei;
}
}
}
//cerr<<"fir kruskal "<<endl;
vector<pair<double, pair<int, int>>> edges;
for (int i = 0; i<(int)vecCon.size() - 1; i++) {
vector<int> outside = vecCon[i];
for (int j = i + 1; j<(int)vecCon.size(); j++) {
vector<int> inside = vecCon[j];
double min_dist = 1e9;
int rx = -1;
int ry = -1;
for (int ii = 0; ii<(int)outside.size(); ii++) {
int outpoi = outside[ii];
for (int jj = 0; jj<(int)inside.size(); jj++) {
int inpoi = inside[jj];
double tdis = dist[inpoi][outpoi];
if (tdis < min_dist) {
min_dist = tdis;
rx = i;
ry = j;
}
}
}
assert(rx != -1);
pair<int, int> p;
p = make_pair(rx, ry);
pair<double, pair<int, int>> p2;
p2.first = min_dist;
p2.second = p;
edges.push_back(p2);
}
}
//cerr<<"connected component dist"<<endl;
double kruskalSum2 = 0;
Disjoint_Union_set dset(N + 1);
sort(edges.begin(), edges.end(), cmp);
for (int i = 0; i<(int)edges.size(); i++) {
double wei = edges[i].first;
int nxx = edges[i].second.first;
int nxy = edges[i].second.second;
if (!dset.is_same_set(nxx, nxy)) {
dset.union_set(nxx, nxy);
kruskalSum2 += wei;
}
}
printf("Case #%d: %d %d %d\n", ca + 1, vecCon.size(), (int)round(kruskalSum), (int)round(kruskalSum2));
}
return 0;
}
本文探讨了在一系列点中,如何通过铺设路径将所有点以最短总距离连通的问题。首先,使用欧氏距离判断点是否属于同一类,并在每类内构建最小生成树。接着,在不同类间构建最小生成树,确保所有类都能互相连接。通过使用并查集数据结构优化算法效率。
926

被折叠的 条评论
为什么被折叠?



