codeforces 1312d count the arrays(组合数学)

本文探讨了一个具体的计数问题,通过组合数学的方法,解决了一个关于在给定区间内选择并放置数字的复杂问题。文章详细介绍了如何在遵循特定规则的情况下,计算不同数字放置方式的数量,并提供了一段C++代码实现。

题目大意:

已知区间长度为n,现在按照规定,我们从[1,m]中选择一部分数字放入这个区间。

规定:必须有一个数字是重复的。

存在下标i,使得下标小于i的数字递增,下标大于i的数字递减,问我们总共有多少种不同的方法来放这些数字。

n,m<=1e5.

解题思路:

首先,我们可以想到C_m^{n-1} 从中选出n-1个数字,然后我们可以让其中一部分的数字重复,但是最大值不能够重复,否则破坏了约束。接着我们可能想满足递增递减约束,但是却下不来手,但是我们换一个角度来考虑,假设中间最大值放好了,重复数字放好了,剩下的n-3个数字是不是既可以放左边又可以放右边呢。所以还有pow(2,n-3)种可能。

所以答案是:

C_m^{n-1} * (n-2)*2^{n-3}

还有两个细节,分别是n=2还有n-1>m时我们需要输出0.

#include <bits/stdc++.h>
#define int long long 

using namespace std;
const int MAXN=2e5+10;
const int MODN=998244353;
int quick_pow(int a,int b){
    int ret=1;
    while(b){
        if(b&1)ret*=a;
        ret%=MODN;
        a*=a;
        a%=MODN;
        b>>=1;
    }
    return ret;
}
int32_t main(){
    int n,m;cin>>n>>m;
    if(n-1>m || n==2)cout<<0<<endl;
    else{
        vector<int> fact(MAXN,1);
        for(int i=1;i<MAXN;i++){
            fact[i]=fact[i-1]*i;
            fact[i]%=MODN;
        }
        // cerr<<fact[n-1]<<endl;
        int comb=fact[m]*quick_pow((fact[n-1]*fact[m-(n-1)])%MODN,MODN-2);
        // cerr<<comb<<endl;
        comb%=MODN;
        comb*=(n-2);
        comb%=MODN;
        comb*=quick_pow(2,n-3);
        comb%=MODN;
        cout<<comb<<endl;
    }
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值