模型介绍参看:博文

VGG16
迁移模型
先看看标准答案
import tensorflow as tf
from tensorflow import keras
base_model = keras.applications.VGG16(weights='imagenet')
base_model.summary()

自建模型
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
def VGG16(nb_classes, input_shape):
input_tensor = Input(shape=input_shape)
# 1st block
x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1a')(input_tensor)
x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1b')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool1')(x)
# 2nd block
x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2a')(x)
x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2b')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool2')(x)
# 3rd block
x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3a')(x)
x = Conv2D(256

该博客详细介绍了如何使用TensorFlow2.0和Keras实现VGG16及VGG19模型。内容包括VGG16模型的迁移学习和自建模型过程,以及VGG19模型的结构增强,增加了额外的卷积层。
最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



