from tensorflow import keras
import skimage
import numpy as np
import tensorflow as tf
from PIL import Image
VGG_MEAN = [103.939, 116.779, 123.68]
# define input layer
input_layer = tf.keras.layers.Input([224, 224, 3])
red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=input_layer)
bgr = tf.concat(axis=3, values=[blue - VGG_MEAN[0], green - VGG_MEAN[1], red - VGG_MEAN[2]])
# Block 1
conv1_1 = tf.keras.layers.Conv2D(filters=64, kernel_size=[3, 3], strides=[1, 1], padding='same',
use_bias=True, activation='relu', name='conv1_1')(bgr)
conv1_2 = tf.keras.layers.Conv2D(filters=64, kernel_size=[3, 3], strides=[1, 1], padding='same',
use_bias=True, activation='relu', name='conv1_2')(conv1_1)
pool1_1 =
tensorflow2.0复现vgg16
最新推荐文章于 2021-10-01 18:53:35 发布