ORB-SLAM2的源码阅读(八):ORBmatcher类

本文深入解析ORB_SLAM2中的ORB匹配器类,介绍其主要功能包括特征点匹配、地图点匹配等,涵盖单目初始化、三角化恢复地图点、跟踪、重定位及闭环检测等应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#ifndef ORBMATCHER_H
#define ORBMATCHER_H

#include<vector>
#include<opencv2/core/core.hpp>
#include<opencv2/features2d/features2d.hpp>

#include"MapPoint.h"
#include"KeyFrame.h"
#include"Frame.h"


namespace ORB_SLAM2
{

//该类负责特征点与特征点之间,地图点与特征点之间通过投影关系、词袋模型或者Sim3位姿匹配。
//用来辅助完成单目初始化,三角化恢复新的地图点,tracking,relocalization以及loop closing
class ORBmatcher
{    
public:

    ORBmatcher(float nnratio=0.6, bool checkOri=true);

    // Computes the Hamming distance between two ORB descriptors
    static int DescriptorDistance(const cv::Mat &a, const cv::Mat &b);

    // Search matches between Frame keypoints and projected MapPoints. Returns number of matches
    // Used to track the local map (Tracking)
    int SearchByProjection(Frame &F, const std::vector<MapPoint*> &vpMapPoints, const float th=3);

    // Project MapPoints tracked in last frame into the current frame and search matches.
    // Used to track from previous frame (Tracking)
    int SearchByProjection(Frame &CurrentFrame, const Frame &LastFrame, const float th, const bool bMono);

    // Project MapPoints seen in KeyFrame into the Frame and search matches.
    // Used in relocalisation (Tracking)
    int SearchByProjection(Frame &CurrentFrame, KeyFrame* pKF, const std::set<MapPoint*> &sAlreadyFound, const float th, const int ORBdist);

    // Project MapPoints using a Similarity Transformation and search matches.
    // Used in loop detection (Loop Closing)
     int SearchByProjection(KeyFrame* pKF, cv::Mat Scw, const std::vector<MapPoint*> &vpPoints, std::vector<MapPoint*> &vpMatched, int th);

    // Search matches between MapPoints in a KeyFrame and ORB in a Frame.
    // Brute force constrained to ORB that belong to the same vocabulary node (at a certain level)
    // Used in Relocalisation and Loop Detection
    int SearchByBoW(KeyFrame *pKF, Frame &F, std::vector<MapPoint*> &vpMapPointMatches);
    int SearchByBoW(KeyFrame *pKF1, KeyFrame* pKF2, std::vector<MapPoint*> &vpMatches12);

    // Matching for the Map Initialization (only used in the monocular case)
    int SearchForInitialization(Frame &F1, Frame &F2, std::vector<cv::Point2f> &vbPrevMatched, std::vector<int> &vnMatches12, int windowSize=10);

    // Matching to triangulate new MapPoints. Check Epipolar Constraint.
    int SearchForTriangulation(KeyFrame *pKF1, KeyFrame* pKF2, cv::Mat F12,
                               std::vector<pair<size_t, size_t> > &vMatchedPairs, const bool bOnlyStereo);

    // Search matches between MapPoints seen in KF1 and KF2 transforming by a Sim3 [s12*R12|t12]
    // In the stereo and RGB-D case, s12=1
    int SearchBySim3(KeyFrame* pKF1, KeyFrame* pKF2, std::vector<MapPoint *> &vpMatches12, const float &s12, const cv::Mat &R12, const cv::Mat &t12, const float th);

    // Project MapPoints into KeyFrame and search for duplicated MapPoints.
    int Fuse(KeyFrame* pKF, const vector<MapPoint *> &vpMapPoints, const float th=3.0);

    // Project MapPoints into KeyFrame using a given Sim3 and search for duplicated MapPoints.
    int Fuse(KeyFrame* pKF, cv::Mat Scw, const std::vector<MapPoint*> &vpPoints, float th, vector<MapPoint *> &vpReplacePoint);

public:

    static const int TH_LOW;
    static const int TH_HIGH;
    static const int HISTO_LENGTH;


protected:

    bool CheckDistEpipolarLine(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &F12, const KeyFrame *pKF);

    float RadiusByViewingCos(const float &viewCos);

    void ComputeThreeMaxima(std::vector<int>* histo, const int L, int &ind1, int &ind2, int &ind3);

    float mfNNratio;
    bool mbCheckOrientation;
};

}// namespace ORB_SLAM

#endif // ORBMATCHER_H
#include "ORBmatcher.h"

#include<limits.h>

#include<opencv2/core/core.hpp>
#include<opencv2/features2d/features2d.hpp>

#include "Thirdparty/DBoW2/DBoW2/FeatureVector.h"

#include<stdint-gcc.h>

using namespace std;

namespace ORB_SLAM2
{

const int ORBmatcher::TH_HIGH = 100;
const int ORBmatcher::TH_LOW = 50;
const int ORBmatcher::HISTO_LENGTH = 30;

ORBmatcher::ORBmatcher(float nnratio, bool checkOri): mfNNratio(nnratio), mbCheckOrientation(checkOri)
{
}

//第一个形参代表需要在其中寻找匹配点的当前图像帧/query
//第二个形参则包含待匹配特征/train

//跟踪局部地图(在局部地图中寻找与当前帧特征点匹配点),因为在TrackReferenceKeyFrame和TrackWithMotionModel中
//仅仅是两帧之间跟踪,会跟丢地图点,这里通过跟踪局部地图,在当前帧中恢复出一些当前帧的一些地图点
//其中的阈值th一般根据单目还是双目,或者最近有没有进行重定位来确定,代表在投影点的这个平面阈值范围内寻找匹配特征点。
//匹配点不仅需要满足对极几何,初始位姿的约束,还需要满足描述子之间距离较小
int ORBmatcher::SearchByProjection(Frame &F, const vector<MapPoint*> &vpMapPoints, const float th)
{
    int nmatches=0;

    const bool bFactor = th!=1.0;

    for(size_t iMP=0; iMP<vpMapPoints.size(); iMP++)
    {
        MapPoint* pMP = vpMapPoints[iMP];
        if(!pMP->mbTrackInView)
            continue;

        if(pMP->isBad())
            continue;

        const int &nPredictedLevel = pMP->mnTrackScaleLevel;

        // The size of the window will depend on the viewing direction
        float r = RadiusByViewingCos(pMP->mTrackViewCos);

        if(bFactor)
            r*=th;

        const vector<size_t> vIndices =
                F.GetFeaturesInArea(pMP->mTrackProjX,pMP->mTrackProjY,r*F.mvScaleFactors[nPredictedLevel],nPredictedLevel-1,nPredictedLevel);

        if(vIndices.empty())
            continue;

        const cv::Mat MPdescriptor = pMP->GetDescriptor();

        int bestDist=256;
        int bestLevel= -1;
        int bestDist2=256;
        int bestLevel2 = -1;
        int bestIdx =-1 ;

        // Get best and second matches with near keypoints
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            if(F.mvpMapPoints[idx])
                if(F.mvpMapPoints[idx]->Observations()>0)
                    continue;

            if(F.mvuRight[idx]>0)
            {
                const float er = fabs(pMP->mTrackProjXR-F.mvuRight[idx]);
                if(er>r*F.mvScaleFactors[nPredictedLevel])
                    continue;
            }

            const cv::Mat &d = F.mDescriptors.row(idx);

            const int dist = DescriptorDistance(MPdescriptor,d);

            if(dist<bestDist)
            {
                bestDist2=bestDist;
                bestDist=dist;
                bestLevel2 = bestLevel;
                bestLevel = F.mvKeysUn[idx].octave;
                bestIdx=idx;
            }
            else if(dist<bestDist2)
            {
                bestLevel2 = F.mvKeysUn[idx].octave;
                bestDist2=dist;
            }
        }

        // Apply ratio to second match (only if best and second are in the same scale level)
        if(bestDist<=TH_HIGH)
        {
            if(bestLevel==bestLevel2 && bestDist>mfNNratio*bestDist2)
                continue;

            F.mvpMapPoints[bestIdx]=pMP;
            nmatches++;
        }
    }

    return nmatches;
}

float ORBmatcher::RadiusByViewingCos(const float &viewCos)
{
    if(viewCos>0.998)
        return 2.5;
    else
        return 4.0;
}


//检查极线距离
//已知基础矩阵为F,两幅图像中的点p2, p1,由对极约束可知p2'*F*p1=0
bool ORBmatcher::CheckDistEpipolarLine(const cv::KeyPoint &kp1,const cv::KeyPoint &kp2,const cv::Mat &F12,const KeyFrame* pKF2)
{
    // Epipolar line in second image l = x1'F12 = [a b c]
    //求极线
    const float a = kp1.pt.x*F12.at<float>(0,0)+kp1.pt.y*F12.at<float>(1,0)+F12.at<float>(2,0);
    const float b = kp1.pt.x*F12.at<float>(0,1)+kp1.pt.y*F12.at<float>(1,1)+F12.at<float>(2,1);
    const float c = kp1.pt.x*F12.at<float>(0,2)+kp1.pt.y*F12.at<float>(1,2)+F12.at<float>(2,2);

    //将第二张图片上的特征点带入极线方程
    const float num = a*kp2.pt.x+b*kp2.pt.y+c;

    const float den = a*a+b*b;

    if(den==0)
        return false;

    //计算特征点到极线的距离
    const float dsqr = num*num/den;

    //看返回的距离误差是否在允许范围内
    return dsqr<3.84*pKF2->mvLevelSigma2[kp2.octave];
}

//SearchByBow函数,注意这里形参表示的匹配的主被动关系和SearchByProjection是反的
//SearchByProjection的目的是根据关键帧来找地图点
//SearchByBoW目的是根据地图点来确定关键帧
//在当前帧中匹配关键帧中的地图点,用于TrackReferenceKayFrame和Relocalization
int ORBmatcher::SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)
{
    const vector<MapPoint*> vpMapPointsKF = pKF->GetMapPointMatches();

    vpMapPointMatches = vector<MapPoint*>(F.N,static_cast<MapPoint*>(NULL));

    const DBoW2::FeatureVector &vFeatVecKF = pKF->mFeatVec;

    int nmatches=0;

    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = 1.0f/HISTO_LENGTH;

    // We perform the matching over ORB that belong to the same vocabulary node (at a certain level)
    DBoW2::FeatureVector::const_iterator KFit = vFeatVecKF.begin();
    DBoW2::FeatureVector::const_iterator Fit = F.mFeatVec.begin();
    DBoW2::FeatureVector::const_iterator KFend = vFeatVecKF.end();
    DBoW2::FeatureVector::const_iterator Fend = F.mFeatVec.end();

    while(KFit != KFend && Fit != Fend)
    {
        if(KFit->first == Fit->first)
        {
            const vector<unsigned int> vIndicesKF = KFit->second;
            const vector<unsigned int> vIndicesF = Fit->second;

            for(size_t iKF=0; iKF<vIndicesKF.size(); iKF++)
            {
                const unsigned int realIdxKF = vIndicesKF[iKF];

                MapPoint* pMP = vpMapPointsKF[realIdxKF];

                if(!pMP)
                    continue;

                if(pMP->isBad())
                    continue;                

                const cv::Mat &dKF= pKF->mDescriptors.row(realIdxKF);

                int bestDist1=256;
                int bestIdxF =-1 ;
                int bestDist2=256;

                for(size_t iF=0; iF<vIndicesF.size(); iF++)
                {
                    const unsigned int realIdxF = vIndicesF[iF];

                    if(vpMapPointMatches[realIdxF])
                        continue;

                    const cv::Mat &dF = F.mDescriptors.row(realIdxF);

                    const int dist =  DescriptorDistance(dKF,dF);

                    if(dist<bestDist1)
                    {
                        bestDist2=bestDist1;
                        bestDist1=dist;
                        bestIdxF=realIdxF;
                    }
                    else if(dist<bestDist2)
                    {
                        bestDist2=dist;
                    }
                }

                if(bestDist1<=TH_LOW)
                {
                    if(static_cast<float>(bestDist1)<mfNNratio*static_cast<float>(bestDist2))
                    {
                        vpMapPointMatches[bestIdxF]=pMP;

                        const cv::KeyPoint &kp = pKF->mvKeysUn[realIdxKF];

                        if(mbCheckOrientation)
                        {
                            float rot = kp.angle-F.mvKeys[bestIdxF].angle;
                            if(rot<0.0)
                                rot+=360.0f;
                            int bin = round(rot*factor);
                            if(bin==HISTO_LENGTH)
                                bin=0;
                            assert(bin>=0 && bin<HISTO_LENGTH);
                            rotHist[bin].push_back(bestIdxF);
                        }
                        nmatches++;
                    }
                }

            }

            KFit++;
            Fit++;
        }
        else if(KFit->first < Fit->first)
        {
            KFit = vFeatVecKF.lower_bound(Fit->first);
        }
        else
        {
            Fit = F.mFeatVec.lower_bound(KFit->first);
        }
    }


    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
                vpMapPointMatches[rotHist[i][j]]=static_cast<MapPoint*>(NULL);
                nmatches--;
            }
        }
    }

    return nmatches;
}

//在当前关键帧中匹配所有关键帧中的地图点,需要计算sim3,用于Loop Closing 
int ORBmatcher::SearchByProjection(KeyFrame* pKF, cv::Mat Scw, const vector<MapPoint*> &vpPoints, vector<MapPoint*> &vpMatched, int th)
{
    // Get Calibration Parameters for later projection
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;

    // Decompose Scw
    cv::Mat sRcw = Scw.rowRange(0,3).colRange(0,3);
    const float scw = sqrt(sRcw.row(0).dot(sRcw.row(0)));
    cv::Mat Rcw = sRcw/scw;
    cv::Mat tcw = Scw.rowRange(0,3).col(3)/scw;
    cv::Mat Ow = -Rcw.t()*tcw;

    // Set of MapPoints already found in the KeyFrame
    set<MapPoint*> spAlreadyFound(vpMatched.begin(), vpMatched.end());
    spAlreadyFound.erase(static_cast<MapPoint*>(NULL));

    int nmatches=0;

    // For each Candidate MapPoint Project and Match
    for(int iMP=0, iendMP=vpPoints.size(); iMP<iendMP; iMP++)
    {
        MapPoint* pMP = vpPoints[iMP];

        // Discard Bad MapPoints and already found
        if(pMP->isBad() || spAlreadyFound.count(pMP))
            continue;

        // Get 3D Coords.
        cv::Mat p3Dw = pMP->GetWorldPos();

        // Transform into Camera Coords.
        cv::Mat p3Dc = Rcw*p3Dw+tcw;

        // Depth must be positive
        if(p3Dc.at<float>(2)<0.0)
            continue;

        // Project into Image
        const float invz = 1/p3Dc.at<float>(2);
        const float x = p3Dc.at<float>(0)*invz;
        const float y = p3Dc.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF->IsInImage(u,v))
            continue;

        // Depth must be inside the scale invariance region of the point
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist = cv::norm(PO);

        if(dist<minDistance || dist>maxDistance)
            continue;

        // Viewing angle must be less than 60 deg
        cv::Mat Pn = pMP->GetNormal();

        if(PO.dot(Pn)<0.5*dist)
            continue;

        int nPredictedLevel = pMP->PredictScale(dist,pKF);

        // Search in a radius
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];

        const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius
        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = 256;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;
            if(vpMatched[idx])
                continue;

            const int &kpLevel= pKF->mvKeysUn[idx].octave;

            if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF->mDescriptors.row(idx);

            const int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        if(bestDist<=TH_LOW)
        {
            vpMatched[bestIdx]=pMP;
            nmatches++;
        }

    }

    return nmatches;
}

//为了进行单目的初始化,来进行匹配
int ORBmatcher::SearchForInitialization(Frame &F1, Frame &F2, vector<cv::Point2f> &vbPrevMatched, vector<int> &vnMatches12, int windowSize)
{
    int nmatches=0;
    vnMatches12 = vector<int>(F1.mvKeysUn.size(),-1);

    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = 1.0f/HISTO_LENGTH;

    vector<int> vMatchedDistance(F2.mvKeysUn.size(),INT_MAX);
    vector<int> vnMatches21(F2.mvKeysUn.size(),-1);

    for(size_t i1=0, iend1=F1.mvKeysUn.size(); i1<iend1; i1++)
    {
        cv::KeyPoint kp1 = F1.mvKeysUn[i1];
        int level1 = kp1.octave;
        if(level1>0)
            continue;

        vector<size_t> vIndices2 = F2.GetFeaturesInArea(vbPrevMatched[i1].x,vbPrevMatched[i1].y, windowSize,level1,level1);

        if(vIndices2.empty())
            continue;

        cv::Mat d1 = F1.mDescriptors.row(i1);

        int bestDist = INT_MAX;
        int bestDist2 = INT_MAX;
        int bestIdx2 = -1;

        for(vector<size_t>::iterator vit=vIndices2.begin(); vit!=vIndices2.end(); vit++)
        {
            size_t i2 = *vit;

            cv::Mat d2 = F2.mDescriptors.row(i2);

            int dist = DescriptorDistance(d1,d2);

            if(vMatchedDistance[i2]<=dist)
                continue;

            if(dist<bestDist)
            {
                bestDist2=bestDist;
                bestDist=dist;
                bestIdx2=i2;
            }
            else if(dist<bestDist2)
            {
                bestDist2=dist;
            }
        }

        if(bestDist<=TH_LOW)
        {
            if(bestDist<(float)bestDist2*mfNNratio)
            {
                if(vnMatches21[bestIdx2]>=0)
                {
                    vnMatches12[vnMatches21[bestIdx2]]=-1;
                    nmatches--;
                }
                vnMatches12[i1]=bestIdx2;
                vnMatches21[bestIdx2]=i1;
                vMatchedDistance[bestIdx2]=bestDist;
                nmatches++;

                if(mbCheckOrientation)
                {
                    float rot = F1.mvKeysUn[i1].angle-F2.mvKeysUn[bestIdx2].angle;
                    if(rot<0.0)
                        rot+=360.0f;
                    int bin = round(rot*factor);
                    if(bin==HISTO_LENGTH)
                        bin=0;
                    assert(bin>=0 && bin<HISTO_LENGTH);
                    rotHist[bin].push_back(i1);
                }
            }
        }

    }

    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
                int idx1 = rotHist[i][j];
                if(vnMatches12[idx1]>=0)
                {
                    vnMatches12[idx1]=-1;
                    nmatches--;
                }
            }
        }

    }

    //Update prev matched
    for(size_t i1=0, iend1=vnMatches12.size(); i1<iend1; i1++)
        if(vnMatches12[i1]>=0)
            vbPrevMatched[i1]=F2.mvKeysUn[vnMatches12[i1]].pt;

    return nmatches;
}

//在当前关键帧中匹配所有关键帧中的地图点,用于LoopClosing
int ORBmatcher::SearchByBoW(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches12)
{
    const vector<cv::KeyPoint> &vKeysUn1 = pKF1->mvKeysUn;
    const DBoW2::FeatureVector &vFeatVec1 = pKF1->mFeatVec;
    const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
    const cv::Mat &Descriptors1 = pKF1->mDescriptors;

    const vector<cv::KeyPoint> &vKeysUn2 = pKF2->mvKeysUn;
    const DBoW2::FeatureVector &vFeatVec2 = pKF2->mFeatVec;
    const vector<MapPoint*> vpMapPoints2 = pKF2->GetMapPointMatches();
    const cv::Mat &Descriptors2 = pKF2->mDescriptors;

    vpMatches12 = vector<MapPoint*>(vpMapPoints1.size(),static_cast<MapPoint*>(NULL));
    vector<bool> vbMatched2(vpMapPoints2.size(),false);

    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);

    const float factor = 1.0f/HISTO_LENGTH;

    int nmatches = 0;

    DBoW2::FeatureVector::const_iterator f1it = vFeatVec1.begin();
    DBoW2::FeatureVector::const_iterator f2it = vFeatVec2.begin();
    DBoW2::FeatureVector::const_iterator f1end = vFeatVec1.end();
    DBoW2::FeatureVector::const_iterator f2end = vFeatVec2.end();

    while(f1it != f1end && f2it != f2end)
    {
        if(f1it->first == f2it->first)
        {
            for(size_t i1=0, iend1=f1it->second.size(); i1<iend1; i1++)
            {
                const size_t idx1 = f1it->second[i1];

                MapPoint* pMP1 = vpMapPoints1[idx1];
                if(!pMP1)
                    continue;
                if(pMP1->isBad())
                    continue;

                const cv::Mat &d1 = Descriptors1.row(idx1);

                int bestDist1=256;
                int bestIdx2 =-1 ;
                int bestDist2=256;

                for(size_t i2=0, iend2=f2it->second.size(); i2<iend2; i2++)
                {
                    const size_t idx2 = f2it->second[i2];

                    MapPoint* pMP2 = vpMapPoints2[idx2];

                    if(vbMatched2[idx2] || !pMP2)
                        continue;

                    if(pMP2->isBad())
                        continue;

                    const cv::Mat &d2 = Descriptors2.row(idx2);

                    int dist = DescriptorDistance(d1,d2);

                    if(dist<bestDist1)
                    {
                        bestDist2=bestDist1;
                        bestDist1=dist;
                        bestIdx2=idx2;
                    }
                    else if(dist<bestDist2)
                    {
                        bestDist2=dist;
                    }
                }

                if(bestDist1<TH_LOW)
                {
                    if(static_cast<float>(bestDist1)<mfNNratio*static_cast<float>(bestDist2))
                    {
                        vpMatches12[idx1]=vpMapPoints2[bestIdx2];
                        vbMatched2[bestIdx2]=true;

                        if(mbCheckOrientation)
                        {
                            float rot = vKeysUn1[idx1].angle-vKeysUn2[bestIdx2].angle;
                            if(rot<0.0)
                                rot+=360.0f;
                            int bin = round(rot*factor);
                            if(bin==HISTO_LENGTH)
                                bin=0;
                            assert(bin>=0 && bin<HISTO_LENGTH);
                            rotHist[bin].push_back(idx1);
                        }
                        nmatches++;
                    }
                }
            }

            f1it++;
            f2it++;
        }
        else if(f1it->first < f2it->first)
        {
            f1it = vFeatVec1.lower_bound(f2it->first);
        }
        else
        {
            f2it = vFeatVec2.lower_bound(f1it->first);
        }
    }

    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
                vpMatches12[rotHist[i][j]]=static_cast<MapPoint*>(NULL);
                nmatches--;
            }
        }
    }

    return nmatches;
}

//利用三角化,在两个关键帧之间恢复出一些地图点SearchForTriangulation
int ORBmatcher::SearchForTriangulation(KeyFrame *pKF1, KeyFrame *pKF2, cv::Mat F12,
                                       vector<pair<size_t, size_t> > &vMatchedPairs, const bool bOnlyStereo)
{    
    const DBoW2::FeatureVector &vFeatVec1 = pKF1->mFeatVec;
    const DBoW2::FeatureVector &vFeatVec2 = pKF2->mFeatVec;

    //Compute epipole in second image
    cv::Mat Cw = pKF1->GetCameraCenter();
    cv::Mat R2w = pKF2->GetRotation();
    cv::Mat t2w = pKF2->GetTranslation();
    cv::Mat C2 = R2w*Cw+t2w;
    const float invz = 1.0f/C2.at<float>(2);
    const float ex =pKF2->fx*C2.at<float>(0)*invz+pKF2->cx;
    const float ey =pKF2->fy*C2.at<float>(1)*invz+pKF2->cy;

    // Find matches between not tracked keypoints
    // Matching speed-up by ORB Vocabulary
    // Compare only ORB that share the same node

    int nmatches=0;
    vector<bool> vbMatched2(pKF2->N,false);
    vector<int> vMatches12(pKF1->N,-1);

    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);

    const float factor = 1.0f/HISTO_LENGTH;

    DBoW2::FeatureVector::const_iterator f1it = vFeatVec1.begin();
    DBoW2::FeatureVector::const_iterator f2it = vFeatVec2.begin();
    DBoW2::FeatureVector::const_iterator f1end = vFeatVec1.end();
    DBoW2::FeatureVector::const_iterator f2end = vFeatVec2.end();

    while(f1it!=f1end && f2it!=f2end)
    {
        if(f1it->first == f2it->first)
        {
            for(size_t i1=0, iend1=f1it->second.size(); i1<iend1; i1++)
            {
                const size_t idx1 = f1it->second[i1];

                MapPoint* pMP1 = pKF1->GetMapPoint(idx1);

                // If there is already a MapPoint skip
                if(pMP1)
                    continue;

                const bool bStereo1 = pKF1->mvuRight[idx1]>=0;

                if(bOnlyStereo)
                    if(!bStereo1)
                        continue;

                const cv::KeyPoint &kp1 = pKF1->mvKeysUn[idx1];

                const cv::Mat &d1 = pKF1->mDescriptors.row(idx1);

                int bestDist = TH_LOW;
                int bestIdx2 = -1;

                for(size_t i2=0, iend2=f2it->second.size(); i2<iend2; i2++)
                {
                    size_t idx2 = f2it->second[i2];

                    MapPoint* pMP2 = pKF2->GetMapPoint(idx2);

                    // If we have already matched or there is a MapPoint skip
                    if(vbMatched2[idx2] || pMP2)
                        continue;

                    const bool bStereo2 = pKF2->mvuRight[idx2]>=0;

                    if(bOnlyStereo)
                        if(!bStereo2)
                            continue;

                    const cv::Mat &d2 = pKF2->mDescriptors.row(idx2);

                    const int dist = DescriptorDistance(d1,d2);

                    if(dist>TH_LOW || dist>bestDist)
                        continue;

                    const cv::KeyPoint &kp2 = pKF2->mvKeysUn[idx2];

                    if(!bStereo1 && !bStereo2)
                    {
                        const float distex = ex-kp2.pt.x;
                        const float distey = ey-kp2.pt.y;
                        if(distex*distex+distey*distey<100*pKF2->mvScaleFactors[kp2.octave])
                            continue;
                    }

                    if(CheckDistEpipolarLine(kp1,kp2,F12,pKF2))
                    {
                        bestIdx2 = idx2;
                        bestDist = dist;
                    }
                }

                if(bestIdx2>=0)
                {
                    const cv::KeyPoint &kp2 = pKF2->mvKeysUn[bestIdx2];
                    vMatches12[idx1]=bestIdx2;
                    nmatches++;

                    if(mbCheckOrientation)
                    {
                        float rot = kp1.angle-kp2.angle;
                        if(rot<0.0)
                            rot+=360.0f;
                        int bin = round(rot*factor);
                        if(bin==HISTO_LENGTH)
                            bin=0;
                        assert(bin>=0 && bin<HISTO_LENGTH);
                        rotHist[bin].push_back(idx1);
                    }
                }
            }

            f1it++;
            f2it++;
        }
        else if(f1it->first < f2it->first)
        {
            f1it = vFeatVec1.lower_bound(f2it->first);
        }
        else
        {
            f2it = vFeatVec2.lower_bound(f1it->first);
        }
    }

    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
                vMatches12[rotHist[i][j]]=-1;
                nmatches--;
            }
        }

    }

    vMatchedPairs.clear();
    vMatchedPairs.reserve(nmatches);

    for(size_t i=0, iend=vMatches12.size(); i<iend; i++)
    {
        if(vMatches12[i]<0)
            continue;
        vMatchedPairs.push_back(make_pair(i,vMatches12[i]));
    }

    return nmatches;
}

//两个重载的Fuse函数,用于地图点的融合
//地图点能匹配上当前关键帧的地图点,也就是地图点重合了
//选择观测数多的地图点替换,地图点能匹配上当前帧的特征点
//如果该特征点还没有生成地图点,则生成新的地图点

int ORBmatcher::Fuse(KeyFrame *pKF, const vector<MapPoint *> &vpMapPoints, const float th)
{
    cv::Mat Rcw = pKF->GetRotation();
    cv::Mat tcw = pKF->GetTranslation();

    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;
    const float &bf = pKF->mbf;

    cv::Mat Ow = pKF->GetCameraCenter();

    int nFused=0;

    const int nMPs = vpMapPoints.size();

    for(int i=0; i<nMPs; i++)
    {
        MapPoint* pMP = vpMapPoints[i];

        if(!pMP)
            continue;

        if(pMP->isBad() || pMP->IsInKeyFrame(pKF))
            continue;

        cv::Mat p3Dw = pMP->GetWorldPos();
        cv::Mat p3Dc = Rcw*p3Dw + tcw;

        // Depth must be positive
        if(p3Dc.at<float>(2)<0.0f)
            continue;

        const float invz = 1/p3Dc.at<float>(2);
        const float x = p3Dc.at<float>(0)*invz;
        const float y = p3Dc.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF->IsInImage(u,v))
            continue;

        const float ur = u-bf*invz;

        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist3D = cv::norm(PO);

        // Depth must be inside the scale pyramid of the image
        if(dist3D<minDistance || dist3D>maxDistance )
            continue;

        // Viewing angle must be less than 60 deg
        cv::Mat Pn = pMP->GetNormal();

        if(PO.dot(Pn)<0.5*dist3D)
            continue;

        int nPredictedLevel = pMP->PredictScale(dist3D,pKF);

        // Search in a radius
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];

        const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius

        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = 256;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            const cv::KeyPoint &kp = pKF->mvKeysUn[idx];

            const int &kpLevel= kp.octave;

            if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)
                continue;

            if(pKF->mvuRight[idx]>=0)
            {
                // Check reprojection error in stereo
                const float &kpx = kp.pt.x;
                const float &kpy = kp.pt.y;
                const float &kpr = pKF->mvuRight[idx];
                const float ex = u-kpx;
                const float ey = v-kpy;
                const float er = ur-kpr;
                const float e2 = ex*ex+ey*ey+er*er;

                if(e2*pKF->mvInvLevelSigma2[kpLevel]>7.8)
                    continue;
            }
            else
            {
                const float &kpx = kp.pt.x;
                const float &kpy = kp.pt.y;
                const float ex = u-kpx;
                const float ey = v-kpy;
                const float e2 = ex*ex+ey*ey;

                if(e2*pKF->mvInvLevelSigma2[kpLevel]>5.99)
                    continue;
            }

            const cv::Mat &dKF = pKF->mDescriptors.row(idx);

            const int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        // If there is already a MapPoint replace otherwise add new measurement
        if(bestDist<=TH_LOW)
        {
            MapPoint* pMPinKF = pKF->GetMapPoint(bestIdx);
            if(pMPinKF)
            {
                if(!pMPinKF->isBad())
                {
                    if(pMPinKF->Observations()>pMP->Observations())
                        pMP->Replace(pMPinKF);
                    else
                        pMPinKF->Replace(pMP);
                }
            }
            else
            {
                pMP->AddObservation(pKF,bestIdx);
                pKF->AddMapPoint(pMP,bestIdx);
            }
            nFused++;
        }
    }

    return nFused;
}

//重载的函数是为了减少尺度漂移的影响,需要知道当前关键帧的sim3位姿
int ORBmatcher::Fuse(KeyFrame *pKF, cv::Mat Scw, const vector<MapPoint *> &vpPoints, float th, vector<MapPoint *> &vpReplacePoint)
{
    // Get Calibration Parameters for later projection
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;

    // Decompose Scw
    cv::Mat sRcw = Scw.rowRange(0,3).colRange(0,3);
    const float scw = sqrt(sRcw.row(0).dot(sRcw.row(0)));
    cv::Mat Rcw = sRcw/scw;
    cv::Mat tcw = Scw.rowRange(0,3).col(3)/scw;
    cv::Mat Ow = -Rcw.t()*tcw;

    // Set of MapPoints already found in the KeyFrame
    const set<MapPoint*> spAlreadyFound = pKF->GetMapPoints();

    int nFused=0;

    const int nPoints = vpPoints.size();

    // For each candidate MapPoint project and match
    for(int iMP=0; iMP<nPoints; iMP++)
    {
        MapPoint* pMP = vpPoints[iMP];

        // Discard Bad MapPoints and already found
        if(pMP->isBad() || spAlreadyFound.count(pMP))
            continue;

        // Get 3D Coords.
        cv::Mat p3Dw = pMP->GetWorldPos();

        // Transform into Camera Coords.
        cv::Mat p3Dc = Rcw*p3Dw+tcw;

        // Depth must be positive
        if(p3Dc.at<float>(2)<0.0f)
            continue;

        // Project into Image
        const float invz = 1.0/p3Dc.at<float>(2);
        const float x = p3Dc.at<float>(0)*invz;
        const float y = p3Dc.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF->IsInImage(u,v))
            continue;

        // Depth must be inside the scale pyramid of the image
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist3D = cv::norm(PO);

        if(dist3D<minDistance || dist3D>maxDistance)
            continue;

        // Viewing angle must be less than 60 deg
        cv::Mat Pn = pMP->GetNormal();

        if(PO.dot(Pn)<0.5*dist3D)
            continue;

        // Compute predicted scale level
        const int nPredictedLevel = pMP->PredictScale(dist3D,pKF);

        // Search in a radius
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];

        const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius

        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = INT_MAX;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(); vit!=vIndices.end(); vit++)
        {
            const size_t idx = *vit;
            const int &kpLevel = pKF->mvKeysUn[idx].octave;

            if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF->mDescriptors.row(idx);

            int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        // If there is already a MapPoint replace otherwise add new measurement
        if(bestDist<=TH_LOW)
        {
            MapPoint* pMPinKF = pKF->GetMapPoint(bestIdx);
            if(pMPinKF)
            {
                if(!pMPinKF->isBad())
                    vpReplacePoint[iMP] = pMPinKF;
            }
            else
            {
                pMP->AddObservation(pKF,bestIdx);
                pKF->AddMapPoint(pMP,bestIdx);
            }
            nFused++;
        }
    }

    return nFused;
}

int ORBmatcher::SearchBySim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint*> &vpMatches12,
                             const float &s12, const cv::Mat &R12, const cv::Mat &t12, const float th)
{
    const float &fx = pKF1->fx;
    const float &fy = pKF1->fy;
    const float &cx = pKF1->cx;
    const float &cy = pKF1->cy;

    // Camera 1 from world
    cv::Mat R1w = pKF1->GetRotation();
    cv::Mat t1w = pKF1->GetTranslation();

    //Camera 2 from world
    cv::Mat R2w = pKF2->GetRotation();
    cv::Mat t2w = pKF2->GetTranslation();

    //Transformation between cameras
    cv::Mat sR12 = s12*R12;
    cv::Mat sR21 = (1.0/s12)*R12.t();
    cv::Mat t21 = -sR21*t12;

    const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
    const int N1 = vpMapPoints1.size();

    const vector<MapPoint*> vpMapPoints2 = pKF2->GetMapPointMatches();
    const int N2 = vpMapPoints2.size();

    vector<bool> vbAlreadyMatched1(N1,false);
    vector<bool> vbAlreadyMatched2(N2,false);

    for(int i=0; i<N1; i++)
    {
        MapPoint* pMP = vpMatches12[i];
        if(pMP)
        {
            vbAlreadyMatched1[i]=true;
            int idx2 = pMP->GetIndexInKeyFrame(pKF2);
            if(idx2>=0 && idx2<N2)
                vbAlreadyMatched2[idx2]=true;
        }
    }

    vector<int> vnMatch1(N1,-1);
    vector<int> vnMatch2(N2,-1);

    // Transform from KF1 to KF2 and search
    for(int i1=0; i1<N1; i1++)
    {
        MapPoint* pMP = vpMapPoints1[i1];

        if(!pMP || vbAlreadyMatched1[i1])
            continue;

        if(pMP->isBad())
            continue;

        cv::Mat p3Dw = pMP->GetWorldPos();
        cv::Mat p3Dc1 = R1w*p3Dw + t1w;
        cv::Mat p3Dc2 = sR21*p3Dc1 + t21;

        // Depth must be positive
        if(p3Dc2.at<float>(2)<0.0)
            continue;

        const float invz = 1.0/p3Dc2.at<float>(2);
        const float x = p3Dc2.at<float>(0)*invz;
        const float y = p3Dc2.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF2->IsInImage(u,v))
            continue;

        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        const float dist3D = cv::norm(p3Dc2);

        // Depth must be inside the scale invariance region
        if(dist3D<minDistance || dist3D>maxDistance )
            continue;

        // Compute predicted octave
        const int nPredictedLevel = pMP->PredictScale(dist3D,pKF2);

        // Search in a radius
        const float radius = th*pKF2->mvScaleFactors[nPredictedLevel];

        const vector<size_t> vIndices = pKF2->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius
        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = INT_MAX;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            const cv::KeyPoint &kp = pKF2->mvKeysUn[idx];

            if(kp.octave<nPredictedLevel-1 || kp.octave>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF2->mDescriptors.row(idx);

            const int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        if(bestDist<=TH_HIGH)
        {
            vnMatch1[i1]=bestIdx;
        }
    }

    // Transform from KF2 to KF2 and search
    for(int i2=0; i2<N2; i2++)
    {
        MapPoint* pMP = vpMapPoints2[i2];

        if(!pMP || vbAlreadyMatched2[i2])
            continue;

        if(pMP->isBad())
            continue;

        cv::Mat p3Dw = pMP->GetWorldPos();
        cv::Mat p3Dc2 = R2w*p3Dw + t2w;
        cv::Mat p3Dc1 = sR12*p3Dc2 + t12;

        // Depth must be positive
        if(p3Dc1.at<float>(2)<0.0)
            continue;

        const float invz = 1.0/p3Dc1.at<float>(2);
        const float x = p3Dc1.at<float>(0)*invz;
        const float y = p3Dc1.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF1->IsInImage(u,v))
            continue;

        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        const float dist3D = cv::norm(p3Dc1);

        // Depth must be inside the scale pyramid of the image
        if(dist3D<minDistance || dist3D>maxDistance)
            continue;

        // Compute predicted octave
        const int nPredictedLevel = pMP->PredictScale(dist3D,pKF1);

        // Search in a radius of 2.5*sigma(ScaleLevel)
        const float radius = th*pKF1->mvScaleFactors[nPredictedLevel];

        const vector<size_t> vIndices = pKF1->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius
        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = INT_MAX;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            const cv::KeyPoint &kp = pKF1->mvKeysUn[idx];

            if(kp.octave<nPredictedLevel-1 || kp.octave>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF1->mDescriptors.row(idx);

            const int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        if(bestDist<=TH_HIGH)
        {
            vnMatch2[i2]=bestIdx;
        }
    }

    // Check agreement
    int nFound = 0;

    for(int i1=0; i1<N1; i1++)
    {
        int idx2 = vnMatch1[i1];

        if(idx2>=0)
        {
            int idx1 = vnMatch2[idx2];
            if(idx1==i1)
            {
                vpMatches12[i1] = vpMapPoints2[idx2];
                nFound++;
            }
        }
    }

    return nFound;
}

//匹配上一帧的地图点,即前后两帧匹配,用于TrackWithMotionModel
int ORBmatcher::SearchByProjection(Frame &CurrentFrame, const Frame &LastFrame, const float th, const bool bMono)
{
    int nmatches = 0;

    // Rotation Histogram (to check rotation consistency)
    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = 1.0f/HISTO_LENGTH;

    const cv::Mat Rcw = CurrentFrame.mTcw.rowRange(0,3).colRange(0,3);
    const cv::Mat tcw = CurrentFrame.mTcw.rowRange(0,3).col(3);

    const cv::Mat twc = -Rcw.t()*tcw;

    const cv::Mat Rlw = LastFrame.mTcw.rowRange(0,3).colRange(0,3);
    const cv::Mat tlw = LastFrame.mTcw.rowRange(0,3).col(3);

    const cv::Mat tlc = Rlw*twc+tlw;

    const bool bForward = tlc.at<float>(2)>CurrentFrame.mb && !bMono;
    const bool bBackward = -tlc.at<float>(2)>CurrentFrame.mb && !bMono;

    for(int i=0; i<LastFrame.N; i++)
    {
        MapPoint* pMP = LastFrame.mvpMapPoints[i];

        if(pMP)
        {
            if(!LastFrame.mvbOutlier[i])
            {
                // Project
                cv::Mat x3Dw = pMP->GetWorldPos();
                cv::Mat x3Dc = Rcw*x3Dw+tcw;

                const float xc = x3Dc.at<float>(0);
                const float yc = x3Dc.at<float>(1);
                const float invzc = 1.0/x3Dc.at<float>(2);

                if(invzc<0)
                    continue;

                float u = CurrentFrame.fx*xc*invzc+CurrentFrame.cx;
                float v = CurrentFrame.fy*yc*invzc+CurrentFrame.cy;

                if(u<CurrentFrame.mnMinX || u>CurrentFrame.mnMaxX)
                    continue;
                if(v<CurrentFrame.mnMinY || v>CurrentFrame.mnMaxY)
                    continue;

                int nLastOctave = LastFrame.mvKeys[i].octave;

                // Search in a window. Size depends on scale
                float radius = th*CurrentFrame.mvScaleFactors[nLastOctave];

                vector<size_t> vIndices2;

                if(bForward)
                    vIndices2 = CurrentFrame.GetFeaturesInArea(u,v, radius, nLastOctave);
                else if(bBackward)
                    vIndices2 = CurrentFrame.GetFeaturesInArea(u,v, radius, 0, nLastOctave);
                else
                    vIndices2 = CurrentFrame.GetFeaturesInArea(u,v, radius, nLastOctave-1, nLastOctave+1);

                if(vIndices2.empty())
                    continue;

                const cv::Mat dMP = pMP->GetDescriptor();

                int bestDist = 256;
                int bestIdx2 = -1;

                for(vector<size_t>::const_iterator vit=vIndices2.begin(), vend=vIndices2.end(); vit!=vend; vit++)
                {
                    const size_t i2 = *vit;
                    if(CurrentFrame.mvpMapPoints[i2])
                        if(CurrentFrame.mvpMapPoints[i2]->Observations()>0)
                            continue;

                    if(CurrentFrame.mvuRight[i2]>0)
                    {
                        const float ur = u - CurrentFrame.mbf*invzc;
                        const float er = fabs(ur - CurrentFrame.mvuRight[i2]);
                        if(er>radius)
                            continue;
                    }

                    const cv::Mat &d = CurrentFrame.mDescriptors.row(i2);

                    const int dist = DescriptorDistance(dMP,d);

                    if(dist<bestDist)
                    {
                        bestDist=dist;
                        bestIdx2=i2;
                    }
                }

                if(bestDist<=TH_HIGH)
                {
                    //为当前帧生成和关键帧匹配上的地图点
                    CurrentFrame.mvpMapPoints[bestIdx2]=pMP;
                    //统计通过投影匹配上的点
                    nmatches++;

                    if(mbCheckOrientation)
                    {
                        float rot = LastFrame.mvKeysUn[i].angle-CurrentFrame.mvKeysUn[bestIdx2].angle;
                        if(rot<0.0)
                            rot+=360.0f;
                        int bin = round(rot*factor);
                        if(bin==HISTO_LENGTH)
                            bin=0;
                        assert(bin>=0 && bin<HISTO_LENGTH);
                        rotHist[bin].push_back(bestIdx2);
                    }
                }
            }
        }
    }

    //Apply rotation consistency
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i!=ind1 && i!=ind2 && i!=ind3)
            {
                for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
                {
                    CurrentFrame.mvpMapPoints[rotHist[i][j]]=static_cast<MapPoint*>(NULL);
                    nmatches--;
                }
            }
        }
    }

    return nmatches;
}

//在当前帧中匹配所有关键帧中的地图点,用于Relocalization
//选取其中一个用于Relocalization的投影匹配着重理解。疑问是,何时用投影匹配,何时用DBoW2进行匹配?
//在Relocalization和LoopClosing中进行匹配的是很多帧关键帧集合中匹配,属于Place Recognition,因此需要DBoW
//而投影匹配适用于两帧之间,或者投影范围内(局部地图,前一个关键帧对应地图点)的MapPoints与当前帧之间

//For Relocalization
int ORBmatcher::SearchByProjection(Frame &CurrentFrame, KeyFrame *pKF, const set<MapPoint*> &sAlreadyFound, const float th , const int ORBdist)
{
    int nmatches = 0;

    const cv::Mat Rcw = CurrentFrame.mTcw.rowRange(0,3).colRange(0,3);
    const cv::Mat tcw = CurrentFrame.mTcw.rowRange(0,3).col(3);
    const cv::Mat Ow = -Rcw.t()*tcw;

    // Rotation Histogram (to check rotation consistency)
    //HISTO_LENGTH = 30
    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = 1.0f/HISTO_LENGTH;

    //获取pKF对应的地图点vpMPs,遍历
    const vector<MapPoint*> vpMPs = pKF->GetMapPointMatches();

    for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
    {
        MapPoint* pMP = vpMPs[i];

        //若该点为NULL,isBad或者在SearchByBow中已经匹配
        //Rlocalization中首先会通过SearchByBow匹配一次,抛弃
        if(pMP)
        {
            if(!pMP->isBad() && !sAlreadyFound.count(pMP))
            {
                //Project
                //通过当前帧的位姿,将世界坐标系下的地图点坐标转换为当前帧坐标系(相机坐标系)下的坐标
                cv::Mat x3Dw = pMP->GetWorldPos();
                cv::Mat x3Dc = Rcw*x3Dw+tcw;

                const float xc = x3Dc.at<float>(0);
                const float yc = x3Dc.at<float>(1);
                const float invzc = 1.0/x3Dc.at<float>(2);//深度是取倒数

                //投影点(u,v)不在畸变矫正过的图像范围内
                const float u = CurrentFrame.fx*xc*invzc+CurrentFrame.cx;
                const float v = CurrentFrame.fy*yc*invzc+CurrentFrame.cy;

                if(u<CurrentFrame.mnMinX || u>CurrentFrame.mnMaxX)
                    continue;
                if(v<CurrentFrame.mnMinY || v>CurrentFrame.mnMaxY)
                    continue;

                // Compute predicted scale level
                //地图点的距离dist3D不在地图点的可观测距离内
                //根据地图点对应的金字塔层数,也就是提取特征的neighbourhood尺寸,抛弃
                cv::Mat PO = x3Dw-Ow;
                float dist3D = cv::norm(PO);

                const float maxDistance = pMP->GetMaxDistanceInvariance();
                const float minDistance = pMP->GetMinDistanceInvariance();

                // Depth must be inside the scale pyramid of the image
                if(dist3D<minDistance || dist3D>maxDistance)
                    continue;

                //通过地图点的距离dist3D,预测特征对应金字塔层nPredictedLevel,
                //并获取搜索window大小(th*scale),在以上约束的范围内
                int nPredictedLevel = pMP->PredictScale(dist3D,&CurrentFrame);

                // Search in a window
                const float radius = th*CurrentFrame.mvScaleFactors[nPredictedLevel];

                //搜索得到候选匹配点向量vIndices2
                const vector<size_t> vIndices2 = CurrentFrame.GetFeaturesInArea(u, v, radius, nPredictedLevel-1, nPredictedLevel+1);

                if(vIndices2.empty())
                    continue;

                //计算地图点的描述子和候选匹配点的描述子距离
                const cv::Mat dMP = pMP->GetDescriptor();

                int bestDist = 256;
                int bestIdx2 = -1;

                //获得最近距离的最佳匹配
                //但是也要满足距离小于设定的阈值ORBdist
                for(vector<size_t>::const_iterator vit=vIndices2.begin(); vit!=vIndices2.end(); vit++)
                {
                    const size_t i2 = *vit;
                    if(CurrentFrame.mvpMapPoints[i2])
                        continue;

                    const cv::Mat &d = CurrentFrame.mDescriptors.row(i2);

                    const int dist = DescriptorDistance(dMP,d);

                    if(dist<bestDist)
                    {
                        bestDist=dist;
                        bestIdx2=i2;
                    }
                }

                if(bestDist<=ORBdist)
                {
                    //为当前帧生成和关键帧匹配上的地图点
                    CurrentFrame.mvpMapPoints[bestIdx2]=pMP;
                    //统计通过投影匹配上的点
                    nmatches++;

                    //最后,还需要通过直方图验证描述子的方向是否匹配
                    //其中角度直方图是用来提出不满足两帧之间角度旋转的外点的
                    //也就是所谓的旋转一致性检测
                    if(mbCheckOrientation)
                    {
                        //将关键帧与当前帧匹配点的angle相减,得到rot(0<=rot<360)
                        float rot = pKF->mvKeysUn[i].angle-CurrentFrame.mvKeysUn[bestIdx2].angle;
                        //放入一个直方图中,对于每一对匹配点的角度差
                        //均可以放入一个bin的范围内(360/HISTO_LENGTH)
                        if(rot<0.0)
                            rot+=360.0f;
                        int bin = round(rot*factor);
                        if(bin==HISTO_LENGTH)
                            bin=0;
                        assert(bin>=0 && bin<HISTO_LENGTH);
                        rotHist[bin].push_back(bestIdx2);
                    }
                }

            }
        }
    }

    //统计直方图最高的三个bin保留,其他范围内的匹配点剔除
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i!=ind1 && i!=ind2 && i!=ind3)
            {
                for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
                {
                    CurrentFrame.mvpMapPoints[rotHist[i][j]]=NULL;
                    nmatches--;
                }
            }
        }
    }

    return nmatches;
}

//另外,若最高的比第二高的高10倍以上,则只保留最高的bin中的匹配点
void ORBmatcher::ComputeThreeMaxima(vector<int>* histo, const int L, int &ind1, int &ind2, int &ind3)
{
    int max1=0;
    int max2=0;
    int max3=0;

    for(int i=0; i<L; i++)
    {
        const int s = histo[i].size();
        if(s>max1)
        {
            max3=max2;
            max2=max1;
            max1=s;
            ind3=ind2;
            ind2=ind1;
            ind1=i;
        }
        else if(s>max2)
        {
            max3=max2;
            max2=s;
            ind3=ind2;
            ind2=i;
        }
        else if(s>max3)
        {
            max3=s;
            ind3=i;
        }
    }

    if(max2<0.1f*(float)max1)
    {
        ind2=-1;
        ind3=-1;
    }
    else if(max3<0.1f*(float)max1)
    {
        ind3=-1;
    }
}


// Bit set count operation from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
//计算描述子之间的hanmming距离
int ORBmatcher::DescriptorDistance(const cv::Mat &a, const cv::Mat &b)
{
    const int *pa = a.ptr<int32_t>();
    const int *pb = b.ptr<int32_t>();

    int dist=0;

    for(int i=0; i<8; i++, pa++, pb++)
    {
        unsigned  int v = *pa ^ *pb;
        v = v - ((v >> 1) & 0x55555555);
        v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
        dist += (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
    }

    return dist;
}

} //namespace ORB_SLAM

最后计算汉明距离,关于词袋模型没有具体讲,最后会增补一些理论细节。

这里写图片描述

嗯,这个类的代码有点长。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值