前言
今天怎么说干的事情不多,一方面是因为看了一篇论文,关于RLPSO的是今年6月3日出来的新的文章《Reinforcement learning based parameters adaption method for particleswarm optimization》
里面提到了不少关于PSO的优化,然后提出了一种基于强化学习的PSO,通过预训练一个神经网络,输入当前的粒子状态,得到一组参数 w,c1,c2。然后做出调整,因为粒子群,包括遗传,EDA 等等对参数的设置是比较敏感,所以你懂的,用深度学习去搞。所以我就想了,能不能在原来的基础上,我也那么干?
然后发现我欠考虑了,写到一半发现方向错了。
一开始,我是打算使用QLearning直接做,因为论文提到的DDPG也是QLearn在线学习嘛。
然后是打算设计动作的,让w,c1,c2 往一定的步长运动,运动方向由QLearn决定,但是这里有涉及到步长的设置,等等,所以发现不如直接得到参数w c1 c2那样一来还不如用DDPG,而且一开始我是使用Qlearning不用神经网络来做的,但是后面发现,智能算法的迭代次数过多就直接炸了,还是要用神经网络也就是DQN,后面也是代码写到一般发现不行,还是要改为DDPG。
但是仔细看看了论文,以及DDPG以后,我陷入了沉思,于是仔细对比策略,发现GAN好像更容易建模去优化PSO。
版权
郑重提示:本文版权归本人所有,任何人不得抄袭,搬运,使用需征得本人同意!