PSO算法(优化与探索四*DDPG与GAN)

本文讨论了基于强化学习的PSO优化方法,分析了DQN和DDPG在解决参数优化问题上的局限性,并提出了GAN在建模优化中的优势。作者通过对比DQN和DDPG的机制,指出DDPG更适合直接生成一组解,而GAN的评委网络可以作为评价标准。文章最后提及使用GAN建模的挑战在于确定判断器的设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

今天怎么说干的事情不多,一方面是因为看了一篇论文,关于RLPSO的是今年6月3日出来的新的文章《Reinforcement learning based parameters adaption method for particleswarm optimization
里面提到了不少关于PSO的优化,然后提出了一种基于强化学习的PSO,通过预训练一个神经网络,输入当前的粒子状态,得到一组参数 w,c1,c2。然后做出调整,因为粒子群,包括遗传,EDA 等等对参数的设置是比较敏感,所以你懂的,用深度学习去搞。所以我就想了,能不能在原来的基础上,我也那么干?

然后发现我欠考虑了,写到一半发现方向错了。
一开始,我是打算使用QLearning直接做,因为论文提到的DDPG也是QLearn在线学习嘛。
然后是打算设计动作的,让w,c1,c2 往一定的步长运动,运动方向由QLearn决定,但是这里有涉及到步长的设置,等等,所以发现不如直接得到参数w c1 c2那样一来还不如用DDPG,而且一开始我是使用Qlearning不用神经网络来做的,但是后面发现,智能算法的迭代次数过多就直接炸了,还是要用神经网络也就是DQN,后面也是代码写到一般发现不行,还是要改为DDPG。

但是仔细看看了论文,以及DDPG以后,我陷入了沉思,于是仔细对比策略,发现GAN好像更容易建模去优化PSO。

版权

郑重提示:本文版权归本人所有,任何人不得抄袭,搬运,使用需征得本人同意!

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Huterox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值