一、标准摆线公式
{ x = r ∗ ( θ − sin ( θ ) ) y = r ∗ ( 1 − cos ( θ ) ) \left\{\begin{array}{l} x=r *(\theta-\sin (\theta)) \\ y=r *(1-\cos (\theta)) \end{array}\right. {
x=r∗(θ−sin(θ))y=r∗(1−cos(θ))
这里的r表示摆线的圆的半径, θ \theta θ是圆的半径所经过的弧度(滚动角)。
for index = 0:1:1000
theta = 2*pi/1000*index
x(index+1) = r*(theta - sin(theta));
y(index+1) = r*(1 - cos(theta));
end
plot (x, y,'-r','linewidth',1);
axis equal
grid on
xlabel('X')
ylabel('Y')
二、摆动相的摆线公式
{ x ( t ) = S 0 2 π ( 2 π t T y − sin ( 2 π t T y ) ) y ( t ) = S 0 2 π ( 1 − cos ( 2 π t T y ) ) \left\{\begin{array}{c} x(t)&=&\frac{S_{0}}{2 \pi}\left(2 \pi \frac{t}{T_{y}}-\sin \left(2 \pi \frac{t}{T_{y}}\right)\right) \\ y(t) &=&\frac{S_{0}}{2 \pi}\left(1-\cos \left(2 \pi \frac{t}{T_{y}}\right)\right) \end{array}\right. ⎩ ⎨ ⎧x(t)y(t)==2πS0(2πTyt−sin(2πTyt))2πS0(1−cos(2πTyt))