【小样本图像分割-4】nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

【小样本图像分割-4】nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

image-20240821180027918

这是一个2018年的文章,其中很多医学图像分割领域的专家都知道的论文,虽然不是完全的小样本学习,我这里也还是放在这里做一个简单的笔记。牛逼的是,这个文章后面是发表在nature上的。

文章的地址:[1809.10486] nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation (arxiv.org)

代码的地址:github.com

摘要

nnU-Net 中的nn分别表示no和new,这个网络不能算作是小样本的医学图像分割方法,但是可以作为一种自适应的医学图像分割方法。该方法能够根据数据集的内容自动的修改模型的超参数,让你的unet模型更加适配你的数据集,从而可以得到一个比较sota的模型。这里作者实践出真知,在比赛中提供了10个数据集上都拿到了不错的成绩,并且这个模型中使用的一些tricks在后续的比赛中都可以借鉴。

U-Net于2015年推出。凭借其简单而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值