转载于:https://blog.youkuaiyun.com/junjun150013652/article/details/81331448
参数解释请参考:https://blog.youkuaiyun.com/qq_32806793/article/details/85322672
函数原型
-
tf.nn.dynamic_rnn(
-
cell,
-
inputs,
-
sequence_length=
None,
-
initial_state=
None,
-
dtype=
None,
-
parallel_iterations=
None,
-
swap_memory=
False,
-
time_major=
False,
-
scope=
None
-
)
实例讲解:
-
import tensorflow
as tf
-
import numpy
as np
-
-
n_steps =
2
-
n_inputs =
3
-
n_neurons =
5
-
-
X = tf.placeholder(tf.float32, [
None, n_steps, n_inputs])
-
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
-
-
seq_length = tf.placeholder(tf.int32, [
None])
-
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,
-
sequence_length=seq_length)
-
-
init = tf.global_variables_initializer()
-
-
X_batch = np.array([
-
# step 0 step 1
-
[[
0,
1,
2], [
9,
8,
7]],
# instance 1
-
[[
3,
4,
5], [
0,
0,
0]],
# instance 2 (padded with zero vectors)
-
[[
6,
7,
8], [
6,
5,
4]],
# instance 3
-
[[
9,
0,
1], [
3,
2,
1]],
# instance 4
-
])
-
seq_length_batch = np.array([
2,
1,
2,
2])
-
-
with tf.Session()
as sess:
-
init.run()
-
outputs_val, states_val = sess.run(
-
[outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
-
print(
"outputs_val.shape:", outputs_val.shape,
"states_val.shape:", states_val.shape)
-
print(
"outputs_val:", outputs_val,
"states_val:", states_val)
log info:
-
outputs_val
.shape: (4, 2, 5)
states_val
.shape: (4, 5)
-
outputs_val:
-
[[[ 0.53073734 -0.61281306 -0.5437517 0.7320347 -0.6109526 ]
-
[ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976]]
-
-
[[ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ]
-
[ 0. 0. 0. 0. 0. ]]
-
-
[[ 0.99992317 0.96815354 -0.985101 0.9995968 -0.9999936 ]
-
[ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]]
-
-
[[ 0.99999255 0.9998929 0.26732785 0.36024097 -0.99991137]
-
[ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]]
-
states_val:
-
[[ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976]
-
[ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ]
-
[ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]
-
[ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]
首先输入X是一个 [batch_size,step,input_size] = [4,2,3] 的tensor,注意我们这里调用的是BasicRNNCell,只有一层循环网络,outputs是最后一层每个step的输出,它的结构是[batch_size,step,n_neurons] = [4,2,5],states是每一层的最后那个step的输出,由于本例中,我们的循环网络只有一个隐藏层,所以它就代表这一层的最后那个step的输出,因此它和step的大小是没有关系的,我们的X有4个样本组成,输出神经元大小n_neurons是5,因此states的结构就是[batch_size,n_neurons] = [4,5],最后我们观察数据,states的每条数据正好就是outputs的最后一个step的输出。
下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用BasicRNNCell
-
import tensorflow
as tf
-
import numpy
as np
-
-
n_steps =
2
-
n_inputs =
3
-
n_neurons =
5
-
n_layers =
3
-
-
X = tf.placeholder(tf.float32, [
None, n_steps, n_inputs])
-
seq_length = tf.placeholder(tf.int32, [
None])
-
-
layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,
-
activation=tf.nn.relu)
-
for layer
in range(n_layers)]
-
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
-
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32, sequence_length=seq_length)
-
-
init = tf.global_variables_initializer()
-
-
X_batch = np.array([
-
# step 0 step 1
-
[[
0,
1,
2], [
9,
8,
7]],
# instance 1
-
[[
3,
4,
5], [
0,
0,
0]],
# instance 2 (padded with zero vectors)
-
[[
6,
7,
8], [
6,
5,
4]],
# instance 3
-
[[
9,
0,
1], [
3,
2,
1]],
# instance 4
-
])
-
-
seq_length_batch = np.array([
2,
1,
2,
2])
-
-
with tf.Session()
as sess:
-
init.run()
-
outputs_val, states_val = sess.run(
-
[outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
-
print(
"outputs_val.shape:", outputs,
"states_val.shape:", states)
-
print(
"outputs_val:", outputs_val,
"states_val:", states_val)
log info:
-
outputs_val.shape:
-
Tensor(
"rnn/transpose_1:0", shape=(?,
2,
5), dtype=float32)
-
-
states_val.shape:
-
(<tf.Tensor
'rnn/while/Exit_3:0' shape=(?,
5) dtype=float32>,
-
<tf.Tensor
'rnn/while/Exit_4:0' shape=(?,
5) dtype=float32>,
-
<tf.Tensor
'rnn/while/Exit_5:0' shape=(?,
5) dtype=float32>)
-
-
outputs_val:
-
[
[[0. 0. 0. 0. 0. ]
-
[
0. 0.18740742 0. 0.2997518 0. ]]
-
-
[
[0. 0.07222144 0. 0.11551574 0. ]
-
[
0. 0. 0. 0. 0. ]]
-
-
[
[0. 0.13463384 0. 0.21534224 0. ]
-
[
0.03702604 0.18443246 0. 0.34539366 0. ]]
-
-
[
[0. 0.54511094 0. 0.8718864 0. ]
-
[
0.5382122 0. 0.04396425 0.4040263 0. ]]]
-
-
states_val:
-
(array([[
0. ,
0.83723307,
0. ,
0. ,
2.8518028 ],
-
[
0. , 0.1996038 , 0. , 0. , 1.5456247 ],
-
[
0. , 1.1372368 , 0. , 0. , 0.832613 ],
-
[
0. , 0.7904129 , 2.4675028 , 0. , 0.36980057]],
-
dtype=float32),
-
array([[
0.6524607 ,
0. ,
0. ,
0. ,
0. ],
-
[
0.25143963, 0. , 0. , 0. , 0. ],
-
[
0.5010576 , 0. , 0. , 0. , 0. ],
-
[
0. , 0.3166597 , 0.4545995 , 0. , 0. ]],
-
dtype=float32),
-
array([[
0. ,
0.18740742,
0. ,
0.2997518 ,
0. ],
-
[
0. , 0.07222144, 0. , 0.11551574, 0. ],
-
[
0.03702604, 0.18443246, 0. , 0.34539366, 0. ],
-
[
0.5382122 , 0. , 0.04396425, 0.4040263 , 0. ]],
-
dtype=float32))
我们说过,outputs是最后一层的输出,即 [batch_size,step,n_neurons] = [4,2,5]
states是每一层的最后一个step的输出,即三个结构为 [batch_size,n_neurons] = [4,5] 的tensor
继续观察数据,states中的最后一个array,正好是outputs的最后那个step的输出
下面我们继续讲当由BasicLSTMCell构造单元工厂的时候,只讲多层的情况,我们只需要将上面的BasicRNNCell替换成BasicLSTMCell就行了,打印信息如下:
-
outputs_val.shape:
-
Tensor(
"rnn/transpose_1:0", shape=(?,
2,
5), dtype=float32)
-
-
states_val.shape:
-
(LSTMStateTuple(c=<tf.Tensor
'rnn/while/Exit_3:0' shape=(?,
5) dtype=float32>,
-
h=<tf.Tensor
'rnn/while/Exit_4:0' shape=(?,
5) dtype=float32>),
-
LSTMStateTuple(c=<tf.Tensor
'rnn/while/Exit_5:0' shape=(?,
5) dtype=float32>,
-
h=<tf.Tensor
'rnn/while/Exit_6:0' shape=(?,
5) dtype=float32>),
-
LSTMStateTuple(c=<tf.Tensor
'rnn/while/Exit_7:0' shape=(?,
5) dtype=float32>,
-
h=<tf.Tensor
'rnn/while/Exit_8:0' shape=(?,
5) dtype=float32>))
-
-
outputs_val:
-
[
[[1.2949290e-04 0.0000000e+00 2.7623639e-04 0.0000000e+00 0.0000000e+00]
-
[
9.4675866e-05 0.0000000e+00 2.0214770e-04 0.0000000e+00 0.0000000e+00]]
-
-
[
[4.3100454e-06 4.2123037e-07 1.4312843e-06 0.0000000e+00 0.0000000e+00]
-
[
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
-
-
[
[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
-
[
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
-
-
[
[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
-
[
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]]
-
-
states_val:
-
(LSTMStateTuple(
-
c=array([[
0. ,
0. ,
0.04676079,
0.04284539,
0. ],
-
[
0. , 0. , 0.0115245 , 0. , 0. ],
-
[
0. , 0. , 0. , 0. , 0. ],
-
[
0. , 0. , 0. , 0. , 0. ]],
-
dtype=float32),
-
h=array([[
0. ,
0. ,
0.00035096,
0.04284406,
0. ],
-
[
0. , 0. , 0.00142574, 0. , 0. ],
-
[
0. , 0. , 0. , 0. , 0. ],
-
[
0. , 0. , 0. , 0. , 0. ]],
-
dtype=float32)),
-
LSTMStateTuple(
-
c=array([[
0.0000000e+00,
1.0477135e-02,
4.9871090e-03,
8.2785974e-04,
-
0.0000000e+00],
-
[
0.0000000e+00, 2.3306280e-04, 0.0000000e+00, 9.9445322e-05,
-
5.9535629e-05],
-
[
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-
0.0000000e+00],
-
[
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-
0.0000000e+00]], dtype=float32),
-
h=array([[
0.00000000e+00,
5.23016974e-03,
2.47756205e-03,
4.11730434e-04,
-
0.00000000e+00],
-
[
0.00000000e+00, 1.16522635e-04, 0.00000000e+00, 4.97301044e-05,
-
2.97713632e-05],
-
[
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-
0.00000000e+00],
-
[
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-
0.00000000e+00]], dtype=float32)),
-
LSTMStateTuple(
-
c=array([[
1.8937115e-04,
0.0000000e+00,
4.0442235e-04,
0.0000000e+00,
-
0.0000000e+00],
-
[
8.6200516e-06, 8.4243663e-07, 2.8625946e-06, 0.0000000e+00,
-
0.0000000e+00],
-
[
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-
0.0000000e+00],
-
[
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-
0.0000000e+00]], dtype=float32),
-
h=array([[
9.4675866e-05,
0.0000000e+00,
2.0214770e-04,
0.0000000e+00,
-
0.0000000e+00],
-
[
4.3100454e-06, 4.2123037e-07, 1.4312843e-06, 0.0000000e+00,
-
0.0000000e+00],
-
[
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-
0.0000000e+00],
-
[
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-
0.0000000e+00]], dtype=float32)))
我们先看看LSTM单元的结构
如果您不查看框内的内容,LSTM单元看起来与常规单元格完全相同,除了它的状态分为两个向量:h(t)和c(t)。你可以将h(t)视为短期状态,将c(t)视为长期状态。
因此我们的states包含三个LSTMStateTuple,每一个表示每一层的最后一个step的输出,这个输出有两个信息,一个是h表示短期记忆信息,一个是c表示长期记忆信息。维度都是[batch_size,n_neurons] = [4,5],states的最后一个LSTMStateTuple中的h就是outputs的最后一个step的输出