∵A是实对称矩阵,∴存在正交阵P,使P−1AP=Λ=(λ1    λ2    ⋱    λn)⇒A=PΛP−1∵A正定,∴λ1,λ2,...,λn全是正数,令Λ1=(λ1    λ2    ⋱    λn),B=PΛ1P−1则B正定,且有B2=BB=PΛ1P−1PΛ1P−1=PΛ12P−1=PΛP−1=A以上内容编辑:尹蓓\because A是实对称矩阵,\therefore 存在正交阵P,使\\ P^{-1}AP=\Lambda=\left( \begin{array}{cccc} \lambda_1&\, &\, &\,\\ \, & \lambda_2&\, &\, \\ \, &\,&\ddots &\, \\ \, &\,& \, &\lambda_n \\ \end{array} \right)\Rightarrow A= P\Lambda P^{-1}\\ \because A正定,\therefore \lambda_1,\lambda_2,...,\lambda_n全是正数,令\\ \Lambda_1 =\left( \begin{array}{cccc} \sqrt{\lambda_1}&\, &\, &\,\\ \, & \sqrt{\lambda_2}&\, &\, \\ \, &\,&\ddots &\, \\ \, &\,& \, &\sqrt{\lambda_n}\\ \end{array} \right),B=P\Lambda_1P^{-1}\\ 则B正定,且有B^2=BB=P\Lambda_1P^{-1}P\Lambda_1P^{-1}\\=P\Lambda_1^2 P^{-1}=P\Lambda P^{-1}=A\\ 以上内容编辑:尹蓓∵A是实对称矩阵,∴存在正交阵P,使P−1AP=Λ=⎝⎜⎜⎛λ1λ2
实对称正定矩阵存在平方根的证明
实对称正定矩阵平方根的存在性证明
最新推荐文章于 2023-11-02 09:56:47 发布
本文详细证明了实对称正定矩阵存在平方根这一数学事实。通过利用实对称矩阵可对角化以及其特征值全为正的性质,构造了一种正定矩阵B,使得B的平方等于原矩阵A,从而证明了A存在正定平方根。

最低0.47元/天 解锁文章
6773

被折叠的 条评论
为什么被折叠?



