cba CNN-LSTM-Attention模型

文章展示了如何利用TensorFlow的Keras库建立一个包含卷积层、MaxPooling、Dropout、双向LSTM以及Attention机制的深度学习模型。模型主要用于序列数据的处理,通过LSTM学习时间序列特征,并用Attention机制增强模型对关键信息的捕捉能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

_________________________________________________________________

from tensorflow.keras.layers import *
from tensorflow.keras.models import *

window = 5
input_size = 10
lstm_units = 16
dropout = 0.01
#建立LSTM模型 训练
inputs=Input(shape=(window, input_size))
model=Conv1D(filters = lstm_units, kernel_size = 1, activation = 'sigmoid')(inputs)#卷积层
model=MaxPooling1D(pool_size = window)(model)#池化层
model=Dropout(dropout)(model)#droupout层
model=Bidirectional(LSTM(lstm_units, activation='tanh'), name='bilstm')(model)#双向LSTM层
attention=Dense(lstm_units*2, activation='sigmoid', name='attention_vec')(model)#求解Attention权重
model=Multiply()([model, attention])#attention与LSTM对应数值相乘
outputs = Dense(1, activation='tanh')(model)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='mse',optimizer='adam',metrics=['accuracy'])
model.summary()#展示模型结构

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 20, 13)] 0

_________________________________________________________________

conv1d (Conv1D) (None, 20, 64) 896

_________________________________________________________________

dropout (Dropout) (None, 20, 64) 0

_________________________________________________________________

bidirectional (Bidirectional (None, 20, 128) 66048

_________________________________________________________________

dropout_1 (Dropout) (None, 20, 128) 0

_________________________________________________________________

attention_vec (Dense) (None, 20, 128) 16512

_________________________________________________________________

flatten (Flatten) (None, 2560) 0

_________________________________________________________________

dense (Dense) (None, 1) 2561

=================================================================

Total params: 86,017

Trainable params: 86,017

Non-trainable params: 0

_________________________________________________________________

定义函数的方法

from tensorflow.keras.layers import *
from tensorflow.keras.models import *


# def attention_model(INPUT_DIMS = 13,TIME_STEPS = 20,lstm_units = 64):
INPUT_DIMS = 13
TIME_STEPS = 20
lstm_units = 64
inputs = Input(shape=(TIME_STEPS, INPUT_DIMS))

x = Conv1D(filters=64, kernel_size=1, activation='relu')(inputs)  # padding = 'same'
x = Dropout(0.3)(x)

# lstm_out = Bidirectional(LSTM(lstm_units, activation='relu'), name='bilstm')(x)
lstm_out = Bidirectional(LSTM(lstm_units, return_sequences=True))(x)
lstm_out = Dropout(0.3)(lstm_out)
# attention_mul = attention_3d_block(lstm_out)
attention_mul = Dense(lstm_units * 2, activation='sigmoid', name='attention_vec')(lstm_out)
attention_mul = Flatten()(attention_mul)

output = Dense(1, activation='sigmoid')(attention_mul)
model = Model(inputs=[inputs], outputs=output)
# return model
model.summary()  # 展示模型结构

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 20, 13)] 0

_________________________________________________________________

conv1d (Conv1D) (None, 20, 64) 896

_________________________________________________________________

dropout (Dropout) (None, 20, 64) 0

_________________________________________________________________

bidirectional (Bidirectional (None, 20, 128) 66048

_________________________________________________________________

dropout_1 (Dropout) (None, 20, 128) 0

_________________________________________________________________

attention_vec (Dense) (None, 20, 128) 16512

_________________________________________________________________

flatten (Flatten) (None, 2560) 0

_________________________________________________________________

dense (Dense) (None, 1) 2561

=================================================================

Total params: 86,017

Trainable params: 86,017

Non-trainable params: 0

_________________________________________________________________

### CNN-LSTM-Attention模型概述 CNN-LSTM-Attention是一种融合卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)的混合深度学习架构。这种组合能够有效处理具有时空特征的数据,例如视频分类、时间序列预测等问题。 #### 实现方法 该模型的核心在于通过CNN提取局部空间特征,利用LSTM捕捉长期依赖关系,并借助Attention机制动态分配不同部分的重要性权重[^1]。以下是其实现的关键步骤: 1. **CNN层**:用于从输入数据中提取低级到高级的空间特征。 2. **LSTM层**:接收由CNN生成的特征向量作为输入,建模其时间维度上的上下文关联。 3. **Attention层**:重新加权来自LSTM的时间步输出,突出重要时刻的信息贡献。 #### Python代码示例 下面提供了一个基于Keras框架构建CNN-LSTM-Attention模型的基础版本: ```python import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D, Flatten, Dense, LSTM, Attention def cnn_lstm_attention_model(input_shape): inputs = Input(shape=input_shape) # CNN Layer conv_layer = Conv1D(filters=64, kernel_size=3, activation='relu')(inputs) max_pooling = MaxPooling1D(pool_size=2)(conv_layer) flatten = Flatten()(max_pooling) # Reshape to fit LSTM input requirements (if necessary) reshape_for_lstm = tf.reshape(flatten, (-1, int(flatten.shape[-1]/input_shape[0]), input_shape[0])) # LSTM Layer with Return Sequences True for Attention lstm_output = LSTM(50, return_sequences=True)(reshape_for_lstm) # Attention Layer attention_weights = Attention()([lstm_output, lstm_output]) # Final Output Layer after applying attention weights on LSTM outputs final_output = Dense(1, activation="sigmoid")(attention_weights[:, -1, :]) # Assuming binary classification task. model = Model(inputs=[inputs], outputs=[final_output]) return model model = cnn_lstm_attention_model((100,)) # Example shape; adjust according to your data. model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) print(model.summary()) ``` 此代码片段定义了一种基本结构,实际应用时需依据特定场景调整参数设置与预处理逻辑。 #### 论文参考 关于此类复合型深度学习模型的研究成果众多,其中一些经典工作包括但不限于: - Bahdanau等人提出的Seq2Seq模型中的Attention机制[^2]。 - Graves团队开发的CTC损失函数结合RNN/LSTM解决语音识别问题的工作[^3]。 这些研究奠定了当前许多复杂AI系统的理论基础。 #### 调优技巧 为了优化CNN-LSTM-Attention模型性能,可以考虑以下几个方面: - 数据增强技术来增加训练样本多样性; - 正则化手段防止过拟合现象发生,比如Dropout或者Batch Normalization; - 学习率调度器配合自适应优化算法提升收敛速度; - 对超参数进行全面网格搜索或随机搜索找到最佳配置集合;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值