Datawhale干货
作者:桔了个仔,南洋理工大学,Datawhale成员
知乎:https://www.zhihu.com/people/huangzhe
这是我个人的机器学习入门清单及路线,所以没有像很多收藏夹那样大而全,一来学不完,二来给自己压力。这是个人的路线。算是个人记录,也给大家参考,如有什么不足之处,欢迎指教。
前置知识及技能:
1、线性代数基础,如果没的话,还是先学了这门课在研究吧,不然会哭的。
2、学会python就行了。R也可以用用。
3、英语。起码能基本的听和读吧,感觉中文的资料还不够多,很难避免要看很多英文资料。建议学习某些教程时看英文版的tutorial,YouTube可以开字幕。
做了个流程图,来展示下我的学习路线。

除了入门课程外,其他四项其实不完全是按照流程的(但总体上是),有时实战时需要学新模型。有时学了某些模型再选方向也未迟。但是入门课程,尤其是C