【题目链接】
https://www.lydsy.com/JudgeOnline/problem.php?id=3545
【题解】
显然离线后会好做许多。
将所有边与询问的困难值排序,用并查集维护连通性,用权值线段树维护连通块权值。每次加入一条边时,若在不同连通块中,就将这两个块合并。用线段树合并维护权值线段树。查询时查询所在块的第K大即可。
时间复杂度
O(N∗logN)
O
(
N
∗
l
o
g
N
)
此题也有在线做法,见:[bzoj3551]
【代码】
/* - - - - - - - - - - - - - - -
User : VanishD
problem : [bzoj3545]
Points : segment trees' merge
- - - - - - - - - - - - - - - */
# include <bits/stdc++.h>
# define ll long long
# define inf 0x3f3f3f3f
# define N 500010
using namespace std;
int read(){
int tmp = 0, fh = 1; char ch = getchar();
while (ch < '0' || ch > '9'){ if (ch == '-') fh = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9'){ tmp = tmp * 10 + ch - '0'; ch = getchar(); }
return tmp * fh;
}
const int L = 0, R = 1e9;
struct Edge{
int u, v, w, id;
}e[N], p[N];
struct Tree{
int pl, pr, num;
}T[N * 18];
int f[N], place, n, m, q, h[N], rt[N], ans[N];
bool cmp(Edge x, Edge y){
return x.w < y.w;
}
int dad(int x){
if (f[x] == x) return f[x];
return f[x] = dad(f[x]);
}
int extend(int p, int data, int l, int r){
if (!p) p = ++place;
T[p].num++;
if (l != r){
int mid = (l + r) / 2;
if (mid >= data) T[p].pl = extend(T[p].pl, data, l, mid);
else T[p].pr = extend(T[p].pr, data, mid + 1, r);
}
return p;
}
int merge(int p1, int p2, int l, int r){
if (p1 == 0) return p2;
if (p2 == 0) return p1;
T[p1].num = T[p1].num + T[p2].num;
if (l != r){
int mid = (l + r) / 2;
T[p1].pl = merge(T[p1].pl, T[p2].pl, l, mid);
T[p1].pr = merge(T[p1].pr, T[p2].pr, mid + 1, r);
}
return p1;
}
int query(int p, int data, int l, int r){
if (l == r) return l;
int mid = (l + r) / 2;
if (T[T[p].pr].num >= data)
return query(T[p].pr, data, mid + 1, r);
else return query(T[p].pl, data - T[T[p].pr].num, l, mid);
}
int main(){
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
n = read(), m = read(), q = read();
for (int i = 1; i <= n; i++){
h[i] = read(); f[i] = i;
rt[i] = extend(rt[i], h[i], L, R);
}
for (int i = 1; i <= m; i++)
e[i].u = read(), e[i].v = read(), e[i].w = read();
sort(e + 1, e + m + 1, cmp);
for (int i = 1; i <= q; i++)
p[i].u = read(), p[i].w = read(), p[i].v = read(), p[i].id = i;
sort(p + 1, p + q + 1, cmp);
for (int i = 1, el = 1, pl = 1; i <= m + q; i++){
if (pl > q || (el <= m && e[el].w <= p[pl].w)){
int u = dad(e[el].u), v = dad(e[el].v);
if (u != v){
rt[u] = merge(rt[u], rt[v], L, R);
f[v] = u;
}
el++;
}
else {
int u = dad(p[pl].u);
if (T[rt[u]].num < p[pl].v)
ans[p[pl].id] = -1;
else ans[p[pl].id] = query(rt[u], p[pl].v, L, R);
pl++;
}
}
for (int i = 1; i <= q; i++)
printf("%d\n", ans[i]);
return 0;
}