NOI 2015 day1 t2 软件包管理器 题解&代码(c++)

这篇博客介绍了如何利用树链剖分算法解决软件包管理器中的依赖关系问题。在给定的输入条件下,博客提供了示例输入和输出,展示了在安装或卸载软件包时如何计算会改变安装状态的软件包数量。博主通过分析指出,所有软件包的状态初始为未安装,依赖关系构成一棵树,并强调了没有环和自我依赖的情况。最后,博客分享了相关的代码实现。

Description


Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。Debian/ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,…,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,Am?1依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。


Input


输入文件的第1行包含1个正整数n,表示软件包的总数。软件包从0开始编号。

随后一行包含n?1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,…,n?2,n?1号软件包依赖的软件包的编号。接下来一行包含1个正整数q,表示询问的总数。之后q行,每行1个询问。询问分为两种:installx:表示安装软件包xuninstallx:表示卸载软件包x你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。


Output


输出文件包括q行。

输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。


Sample Input


7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0


Sample Output


3
1
3
2
3


HINT

一开始所有的软件包都处于未安装状态。

安装 5 号软件包,需要安装 0,1,5 三个软件包。
之后安装 6 号软件包,只需要安装 6 号软件包。此时安装了 0,1,5,6 四个软件包。
卸载 1 号软件包需要卸载 1,5,6 三个软件包。此时只有 0 号软件包还处于安装状态。
之后安装 4 号软件包,需要安装 1,4 两个软件包。此时 0,1,4 处在安装状态。
最后,卸载 0 号软件包会卸载所有的软件包。


n<=100000
q<=100000


题解:读完题可以发现软件包之间的关系其实是一棵树。支持的操作有链修改,链查询,子树修改,子树查询。树链剖分就好了。。


代码:


#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
#include<math.h>
&lt;think&gt;我们正在解析NOI2015软件包管理器题目,使用树链剖分和线段树实现。题目描述:有n个软件包(编号0~n-1),它们之间有依赖关系形成一棵树(除0号外,每个包依赖一个父包)。初始所有软件包安装。两种操作:installx:安装x以及x的依赖(从x到0号路径上所有未安装的包)uninstallx:卸载x以及x的依赖(x的子树中所有已安装的包)对于每个操作,输出操作会改变多少个软件包安装状态(即从未安装变为安装,或从已安装变为未安装),然后应用操作。我们使用树链剖分将树转化为序列,然后用线段树维护区间和(安装状态为1,未安装为0)。这样:install操作:相当于从x到根节点的路径上未安装的节点全部安装。我们需要计算路径上未安装的节点数(即0的个数),然后全部置为1。uninstall操作:相当于将x的子树中已安装的节点全部卸载。我们需要计算子树中已安装的节点数(即1的个数),然后全部置为0。注意:树链剖分后,节点在序列中的位置用dfn序(DFS序)表示。子树对应区间[dfn[x],dfn[x]+size[x]-1];路径则通过树链剖分拆分成若干条重链上的区间。我们使用线段树维护区间和,同时支持区间覆盖(置0或置1)和区间求和。此外,我们还需要支持区间覆盖时,同时记录覆盖的值(0或1)以及懒标记。具体步骤:1.预处理:树链剖分(两次DFS)第一次DFS:求父节点、深度、子树大小、重儿子第二次DFS:求DFS序、重链顶点2.建线段树:根据dfn序,每个节点对应线段树的一个位置,初始值为0(未安装)。3.对于每个操作:installx:从x向上跳重链直到根节点,每次处理一条重链的区间。我们需要计算从x到根节点的路径上0的个数(即区间长度减去区间和),然后整个路径置1。改变的状态数=路径上0的个数。注意:跳重链时,将路径拆分成多个区间,从下往上(x到根)的区间是连续的,但要注意区间方向(dfn序从根往下递增,所以我们从x往上跳时,区间是从dfn[top[x]]到dfn[x]这样一段,然后x跳到fa[top[x]],继续处理)。uninstallx:直接处理子树:区间为[dfn[x],dfn[x]+sz[x]-1]改变的状态数=子树中1的个数(即区间和),然后置0。4.线段树需要实现:-区间覆盖(set)操作:将区间[l,r]覆盖为0或1,同时维护区间和。-区间求和(sum)操作。5.注意:在install操作中,我们进行路径查询和更新时,需要先查询路径上0的个数(即未安装的个数),然后执行覆盖为1。同样,uninstall操作先查询1的个数,然后覆盖为0。由于覆盖操作会改变区间的值,我们需要懒标记(lazy)来记录覆盖值(0或1)或者标记为无操作(例如-1)。代码结构:-定义树结构(邻接表)-树链剖分预处理-线段树类-主函数:读入数据、建树、剖分、处理操作下面我们给出C++代码解析,并添加详细注释。&lt;/think&gt;### NOI2015 软件包管理器 C++ 代码解析(树链剖分+线段树) #### 问题分析 软件包管理器需要维护树形依赖结构(0号包为根节点),支持两种操作: 1. **install x**:安装x及所有依赖(x&rarr;根的路径) 2. **uninstall x**:卸载x及所有依赖(x的子树) 需要动态统计每次操作**改变的安装状态数量**(未安装&rarr;安装 或 已安装&rarr;未安装) #### 核心算法设计 ```mermaid graph TD A[树链剖分] --&gt; B[重链划分] B --&gt; C[DFS序映射] C --&gt; D[线段树维护] D --&gt; E[路径操作 install] D --&gt; F[子树操作 uninstall] ``` #### 代码实现解析 ##### 1. 树链剖分预处理 ```cpp // 第一次DFS:求子树大小/重儿子 void dfs1(int u) { siz[u] = 1; for(int v : G[u]) { dep[v] = dep[u] + 1; // 深度 dfs1(v); siz[u] += siz[v]; // 子树大小 if(siz[v] &gt; siz[son[u]]) son[u] = v; // 重儿子 } } // 第二次DFS:生成DFS序和重链 void dfs2(int u, int topf) { dfn[u] = ++cnt; // DFS序 top[u] = topf; // 重链顶端 if(son[u]) dfs2(son[u], topf); // 优先处理重儿子 for(int v : G[u]) { if(v == son[u]) continue; dfs2(v, v); // 新重链 } } ``` ##### 2. 线段树设计 ```mermaid classDiagram class SegmentTree { -sum[N&lt;&lt;2] : int // 区间和(已安装数量) -tag[N&lt;&lt;2] : int // 懒标记(-1未覆盖,0置0,11) +push_up(int rt) // 更新区间和 +push_down(int rt, int len) // 下传标记 +update(int L, int R, int l, int r, int rt, int val) // 区间覆盖 +query(int L, int R, int l, int r, int rt) : int // 区间查询 } ``` ##### 3. 关键操作实现 **install操作(路径覆盖)** ```cpp int install(int x) { int res = 0, org = x; while(top[x] != 0) { // 从x向根跳重链 // 查询路径上未安装数量 = 路径长度 - 已安装数量 res += (dfn[x] - dfn[top[x]] + 1) - tree.query(dfn[top[x]], dfn[x], 1, n, 1); tree.update(dfn[top[x]], dfn[x], 1, n, 1, 1); // 覆盖为安装状态 x = fa[top[x]]; // 跳到上条重链 } // 处理最后一段(根节点所在重链) res += (dfn[x] - dfn[0] + 1) - tree.query(dfn[0], dfn[x], 1, n, 1); tree.update(dfn[0], dfn[x], 1, n, 1, 1); return res; } ``` **uninstall操作(子树覆盖)** ```cpp int uninstall(int x) { // 查询子树中已安装数量 int res = tree.query(dfn[x], dfn[x]+siz[x]-1, 1, n, 1); tree.update(dfn[x], dfn[x]+siz[x]-1, 1, n, 1, 0); // 覆盖为未安装 return res; } ``` #### 时间复杂度分析 | 操作 | 时间复杂度 | 原理 | |-------------|------------|--------------------| | 树链剖分预处理 | $O(n)$ | 两次DFS | | install操作 | $O(\log^2 n)$ | 重链拆分+线段树操作 | | uninstall操作 | $O(\log n)$ | 子树区间操作 | #### 完整代码结构 ```cpp #include &lt;vector&gt; #include &lt;cstring&gt; using namespace std; const int N = 1e5+5; vector&lt;int&gt; G[N]; // 依赖树 int fa[N], dep[N], siz[N], son[N]; int dfn[N], top[N], cnt; SegmentTree tree; // 线段树 int main() { // 读入依赖关系 // 树链剖分预处理 // 处理q个操作: while(q--) { if(op == &quot;install&quot;) cout &lt;&lt; install(x) &lt;&lt; endl; else cout &lt;&lt; uninstall(x) &lt;&lt; endl; } } ``` #### 树链剖分核心思想 将树拆分为**重链**,利用DFS序使: 1. 每条重链在DFS序上连续 2. 任意节点到根的路径被拆分为$O(\log n)$条重链 3. 子树对应DFS序上的连续区间 通过线段树高效处理**路径和子树**操作,将树操作转化为区间操作[^1][^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值