【从零开始学习YOLOv3】4. YOLOv3中的参数搜索

前言:YOLOv3代码中也提供了参数搜索,可以为对应的数据集进化一套合适的超参数。本文建档分析一下有关这部分的操作方法以及其参数的具体进化方法。

1. 超参数

YOLOv3中的 超参数在train.py中提供,其中包含了一些数据增强参数设置,具体内容如下:

hyp = {
   'giou': 3.54,  # giou loss gain
       'cls': 37.4,  # cls loss gain
       'cls_pw': 1.0,  # cls BCELoss positive_weight
       'obj': 49.5,  # obj loss gain (*=img_size/320 if img_size != 320)
       'obj_pw': 1.0,  # obj BCELoss positive_weight
       'iou_t': 0.225,  # iou training threshold
       'lr0': 0.00579,  # initial learning rate (SGD=1E-3, Adam=9E-5)
       'lrf': -4.,  # final LambdaLR learning rate = lr0 * (10 ** lrf)
       'momentum': 0.937,  # SGD momentum
       'weight_decay': 0.000484,  # optimizer weight decay
       'fl_gamma': 0.5,  # focal loss gamma
       'hsv_h': 0.0138,  # image HSV-Hue augmentation (fraction)
       'hsv_s': 0.678,  # image HSV-Saturation augmentation (fraction)
       'hsv_v': 0.36,  # image HSV-Value augmentation (fraction)
       'degrees': 1.98,  # image rotation (+/- deg)
       'translate': 0.05,  # image translation (+/- fraction)
       'scale': 0.05,  # image scale (+/- gain)
       'shear': 0.641}  # image shear (+/- deg)
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值