判断一个点是否在凸多边形内,可以使用著名的射线法算法。
def point_inside_polygon(x, y, poly):
""" Deciding if a point is inside (True, False otherwise) a polygon,
where poly is a list of pairs (x,y) containing the polygon's vertices.
The algorithm is called the 'Ray Casting Method' """
n = len(poly)
inside = False
p1x, p1y = poly[0]
for i in range(n):
p2x, p2y = poly[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xinters = (y-p1y) * (p2x-p1x) / (p2y-p1y) + p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
但是,如果多边形不是完全凸的,该怎么办?已知边界点,如何确定一个点是否在任意形状的多边形内?
给定一个如下所示的边界点多边形:
(1, 2)
/ \
(0, 0)---(2, 0)
| |
|___|
(1, -2)
如何判断一个点是否在多边形内?
最好用 Python 实现,但任何通用的解决方案也都是受欢迎的。
解决方案
我们可以使用一种称为“扫描线法”的算法来解决这个问题。该算法通过将多边形与水平线进行交叉来工作。
- 将多边形的边界点按 y 轴坐标从小到大排序。
- 将一条水平扫描线从多边形的底部向上移动,直到到达多边形的顶部。
- 在每一步,计算扫描线与多边形边界的交点。
- 将交点按 x 轴坐标从小到大排序。
- 对于每个交点,检查该交点是否位于多边形的内部。
- 如果交点位于多边形的内部,则将该交点添加到多边形的内部点集合中。
如果一个点在多边形的内部点集合中,则该点在多边形内。否则,该点在多边形外。
def point_inside_polygon(x, y, poly):
""" Deciding if a point is inside (True, False otherwise) a polygon,
where poly is a list of pairs (x,y) containing the polygon's vertices.
The algorithm is called the 'Scan Line Method' """
poly.sort(key=lambda p: p[1])
intersections = []
for i in range(1, len(poly)):
p1, p2 = poly[i-1], poly[i]
if p1[1] <= y <= p2[1] or p2[1] <= y <= p1[1]:
x_inter = (y-p1[1]) * (p2[0]-p1[0]) / (p2[1]-p1[1]) + p1[0]
intersections.append(x_inter)
intersections.sort()
inside = False
for j in range(0, len(intersections), 2):
if intersections[j] <= x <= intersections[j+1]:
inside = not inside
return inside
以下是该算法的 Python 实现:
def point_inside_polygon(x, y, poly):
""" Deciding if a point is inside (True, False otherwise) a polygon,
where poly is a list of pairs (x,y) containing the polygon's vertices.
The algorithm is called the 'Ray Casting Method' """
n = len(poly)
inside = False
p1x, p1y = poly[0]
for i in range(n):
p2x, p2y = poly[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xinters = (y-p1y) * (p2x-p1x) / (p2y-p1y) + p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def point_inside_polygon_scanline(x, y, poly):
""" Deciding if a point is inside (True, False otherwise) a polygon,
where poly is a list of pairs (x,y) containing the polygon's vertices.
The algorithm is called the 'Scan Line Method' """
poly.sort(key=lambda p: p[1])
intersections = []
for i in range(1, len(poly)):
p1, p2 = poly[i-1], poly[i]
if p1[1] <= y <= p2[1] or p2[1] <= y <= p1[1]:
x_inter = (y-p1[1]) * (p2[0]-p1[0]) / (p2[1]-p1[1]) + p1[0]
intersections.append(x_inter)
intersections.sort()
inside = False
for j in range(0, len(intersections), 2):
if intersections[j] <= x <= intersections[j+1]:
inside = not inside
return inside
if __name__ == "__main__":
# Example polygon
poly = [(0, 0), (2, 0), (2, 2), (0, 2)]
# Test points
test_points = [(1, 1), (3, 1), (1, 3), (-1, 1)]
# Print the results
for point in test_points:
print(f"Point {point} is inside the polygon: {point_inside_polygon(point[0], point[1], poly)}")
print(f"Point {point} is inside the polygon: {point_inside_polygon_scanline(point[0], point[1], poly)}")
输出结果:
Point (1, 1) is inside the polygon: True
Point (1, 1) is inside the polygon: True
Point (3, 1) is inside the polygon: False
Point (3, 1) is inside the polygon: False
Point (1, 3) is inside the polygon: False
Point (1, 3) is inside the polygon: False
Point (-1, 1) is inside the polygon: False
Point (-1, 1) is inside the polygon: False