Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements
in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated
by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers
in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
将二维转换为一维,再用一般的最大连续子串和来更新max;
定义两个指针i和j指向矩阵的列,将第k行从第i列到第j列的元素和表示为sum,现在有k个sum组成一个一维序列,求得该序列最大连续子串和来更新max,这样将所有i和j的值遍历完后就得到max了
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int a[110][110]; int sum[110][110]; int main(){ int n; while(cin>>n){ memset(a,0,sizeof(a));memset(sum,0,sizeof(sum)); for(int i=0;i<n;i++){ for(int j=1;j<=n;j++){ scanf("%d",&a[i][j-1]); sum[i][j]=sum[i][j-1]+a[i][j-1]; } } int ans=INT_MIN; for(int i=0;i<n;i++) for(int j=i;j<=n;j++) { int sum1=0; for(int k=0;k<n;k++){ sum1+=sum[k][j]-sum[k][i]; if(sum1<0)sum1=0; else if(sum1>ans)ans=sum1; }} printf("%d\n",ans); }}