微带阻抗匹配网络(一)

本文深入探讨了微波传输线的理论,包括电路理论与传输线理论的区别、长线理论、分布参数、电报方程、无耗传输线的特性、反射系数和驻波比。分析了在不同工作状态下的电压和电流分布,以及输入阻抗、反射系数和驻波比之间的关系,展示了传输线如何在匹配、短路、开路和纯电抗负载时产生不同的行为。同时,重点讨论了反射现象、输入阻抗、驻波比和行驻波状态,揭示了传输线在微波通信中的重要作用。

微波传输线

电路理论和传输线理论之间的关键差别是电尺寸。电路理论中,由于电路尺寸远小于其工作波长,因此在电路分析中不考虑信号在传输过程中电压、电流幅度和相位的变化。而在微波下工作的传输线,其几何长度lll与工作波长λ\lambdaλ在同一数量级。

长线理论

通过定义电长度,对传输线进行分类:
电长度=lλ电长度=\frac{l}{\lambda}=λl
当传输线长度大于信号波长的十分之一,即电长度lλ>0.1\frac{l}{\lambda}>0.1λl>0.1时,传输线就应该被视为长线处理。此时,传输线上的电压和电流不仅与时间有关,也与位置有关。如下图所示:

在这里插入图片描述

微带线属于微波传输线的一种,是准TEM波传输线。

传输线的分布参数

对于长线来说,同一时刻传输线上不同位置的电压、电流幅度和相位相差很大,就必须考虑传输线的分布参数。
传输线的分布参数主要有:

  1. 由传输线导体自身电阻以及趋肤效应产生的分布电阻RRR
  2. 由传输线相邻两个导体之间绝缘介质的漏电流而产生的并联电阻,用电导GGG表示。
  3. 传输线相邻两导体之间存在的寄生电容CCC
  4. 传输线自感产生的分布电感LLL
    在这里插入图片描述

电报方程及其求解

假设传输线分布参数均匀不变,即一条均匀传输线。如果在线上任取一段线元dzdzdz,且满足dz≪λdz \ll \lambdadzλ,则可以将其视作集总参数电路,等效网络如下图所示。
在这里插入图片描述

列出电报方程

基尔霍夫电压定律

在这里插入图片描述

v(z,t)−i(z,t)R0dz−(L0dz)∂i(z,t)∂t−v(z+dz,t)=0v(z,t)-i(z, t)R_0dz- (L_0 dz)\frac{\partial i(z, t)}{\partial t}-v(z+dz, t) = 0v(z,t)i(z,t)R0dz(L0dz)ti(z,t)v(z+dz,t)=0

基尔霍夫电流定律

在这里插入图片描述

i(z,t)−(G0dz)v(z+dz,t)−(C0dz)∂v(z+dz,t)∂t−i(z+dz,t)=0i(z, t)-(G_0dz)v(z+dz,t)-(C_0dz)\frac{\partial v(z+dz, t)}{\partial t}-i(z+dz, t)=0i(z,t)(G0dz)v(z+dz,t)(C0dz)tv(z+dz,t)i(z+dz,t)=0

近似与化简

zzz很小时,电压和电流的增量可以用微分表示,即:

{ v(z+dz,t)=v(z,t)+∂v(z,t)∂zdzi(z+dz,t)=i(z,t)+∂i(z,t)∂zdz \begin{cases} v(z+dz,t)=v(z,t)+\frac{\partial v(z, t)}{\partial z}dz\\ i(z+dz,t)=i(z,t)+\frac{\partial i(z,t)}{\partial z}dz \end{cases} { v(z+dz,t)=v(z,t)+zv(z,t)dzi(z+dz,t)=i(z,t)+zi(z,t)dz

带入基尔霍夫电压等式

{ v(z,t)−i(z,t)R0dz−(L0dz)∂i(z,t)∂t−v(z+dz,t)=0v(z+dz,t)=v(z,t)+∂v(z,t)∂zdz \begin{cases} v(z,t)-i(z, t)R_0dz- (L_0 dz)\frac{\partial i(z, t)}{\partial t}-v(z+dz, t) = 0\\ v(z+dz,t)=v(z,t)+\frac{\partial v(z, t)}{\partial z}dz \end{cases} { v(z,t)i(z,t)R0dz(L0dz)ti(z,t)v(z+dz,t)=0v(z+dz,t)=v(z,t)+zv(z,t)dz

⇒v(z,t)−(R0dz)i(z,t)−(L0dz)∂i(z,t)∂t−v(z,t)−∂v(z,t)∂zdz=0\Rightarrow v(z,t)-(R_0dz)i(z,t)-(L_0dz)\frac{\partial i(z,t)}{\partial t}-v(z,t)-\frac{\partial v(z, t)}{\partial z}dz=0v(z,t)(R0dz)i(z,t)(L0dz)ti(z,t)v(z,t)zv(z,t)dz=0
⇒∂v(z,t)∂zdz+(L0dz)∂i(z,t)∂t+(R0dz)i(z,t)=0\Rightarrow \frac{\partial v(z, t)}{\partial z}dz+(L_0dz)\frac{\partial i(z,t)}{\partial t}+(R_0dz)i(z,t)=0zv(z,t)dz+(L0dz)ti(z,t)+(R0dz)i(z,t)=0
⇒∂v(z,t)∂z+L0∂i(z,t)∂t+R0i(z,t)=0\Rightarrow \frac{\partial v(z, t)}{\partial z}+L_0\frac{\partial i(z,t)}{\partial t}+R_0i(z,t)=0zv(z,t)+L0ti(z,t)+R0i(z,t)=0

带入基尔霍夫电流等式

{ i(z,t)=i(z+dz,t)−∂i(z,t)∂zdzi(z,t)−(G0dz)v(z+dz,t)−(C0dz)∂v(z+dz,t)∂t−i(z+dz,t)=0 \begin{cases} i(z,t)=i(z+dz,t)-\frac{\partial i(z,t)}{\partial z}dz\\ i(z, t)-(G_0dz)v(z+dz,t)-(C_0dz)\frac{\partial v(z+dz, t)}{\partial t}-i(z+dz, t)=0 \end{cases} { i(z,t)=i(z+dz,t)zi(z,t)dzi(z,t)(G0dz)v(z+dz,t)(C0dz)tv(z+dz,t)i(z+dz,t)=0
⇒∂i(z,t)∂zdz+(G0dz)v(z+dz,t)+(C0dz)∂v(z+dz,t)∂t=0\Rightarrow \frac{\partial i(z,t)}{\partial z}dz+(G_0dz)v(z+dz,t)+(C_0dz)\frac{\partial v(z+dz, t)}{\partial t}=0zi(z,t)dz+(G0dz)v(z+dz,t)+(C0dz)tv(z+dz,t)=0
⇒∂i(z,t)∂z+G0v(z,t)+C0∂v(z,t)∂t=0\Rightarrow \frac{\partial i(z,t)}{\partial z}+G_0v(z,t)+C_0\frac{\partial v(z, t)}{\partial t}=0zi(z,t)+G0v(z,t)+C0tv(z,t)=0

传输线方程(电报方程)

将上节中得到的两个微分方程联立即可得到传输线方程。
{ ∂v(z,t)∂z+L0∂i(z,t)∂t+R0i(z,t)=0∂i(z,t)∂z+G0v(z,t)+C0∂v(z,t)∂t=0 \begin{cases} \frac{\partial v(z, t)}{\partial z}+L_0\frac{\partial i(z,t)}{\partial t}+R_0i(z,t)=0\\ \frac{\partial i(z,t)}{\partial z}+G_0v(z,t)+C_0\frac{\partial v(z, t)}{\partial t}=0 \end{cases} { zv(z,t)+L0ti(z,t)+R0i(z,t)=0zi(z,t)+G0v(z,t)+C0tv(z,t)=0
⇓\Downarrow
{ −∂v(z,t)∂z=L0∂i(z,t)∂t+R0i(z,t)−∂i(z,t)∂z=C0∂v(z,t)∂t+G0v(z,t) \begin{cases} -\frac{\partial v(z, t)}{\partial z}=L_0\frac{\partial i(z,t)}{\partial t}+R_0i(z,t)\\ -\frac{\partial i(z,t)}{\partial z}=C_0\frac{\partial v(z, t)}{\partial t}+G_0v(z,t) \end{cases} { zv(z,t)=L0ti(z,t)+R0i(z,t)zi(z,t)=C0tv(z,t)+G0v(z,t)
如果vvviii都是简谐波,则可以表示成:
{ v(z,t)=Re[V(z)ejωt]i(z,t)=Re[I(z)ejωt] \begin{cases} v(z,t)=Re[V(z)e^{j\omega t}] \\ i(z,t)=Re[I(z)e^{j\omega t}] \end{cases} { v(z,t)=Re[V(z)ejωt]i(z,t)=Re[I(z)ejωt]
将上述形式带入到传输线方程中:
{ −∂(V(z)ejωt)∂z=L0∂(I(z)ejωt)∂t+R0I(z)ejωt−∂(I(z)ejωt)∂z=C0∂(V(z)ejωt)∂t+G0V(z)ejωt \begin{cases} -\frac{\partial(V(z)e^{j\omega t})}{\partial z}=L_0\frac{\partial (I(z)e^{j\omega t})}{\partial t}+R_0I(z)e^{j\omega t}\\ -\frac{\partial (I(z)e^{j\omega t} )}{\partial z}=C_0\frac{\partial (V(z)e^{j\omega t})}{\partial t}+G_0V(z)e^{j\omega t} \end{cases} { z(V(z)ejωt)=L0t(I(z)ejωt)+R0I(z)ejωtz(I(z)ejωt)=C0t(V(z)ejωt)+G0V(z)ejωt
⇓\Downarrow
{ −∂V(z)∂zejωt=L0jωI(z)ejωt+R0I(z)ejωt−∂I(z)∂zejωt=C0jωV(z)ejωt+G0V(z)ejωt \begin{cases} -\frac{\partial V(z)}{\partial z}e^{j\omega t}=L_0j \omega I(z)e^{j\omega t}+R_0I(z)e^j\omega t \\ -\frac{\partial I(z)}{\partial z}e^{j\omega t}=C_0j\omega V(z)e^{j\omega t}+G_0V(z)e^{j\omega t} \end{cases} { zV(z)ejωt=L0jωI(z)ejωt+R0I(z)ejωtzI(z)ejωt=C0jωV(z)ejωt+G0V(z)ejωt
⇓\Downarrow
{ −∂V(z)∂z=I(z)(jωL0+R0)−∂I(z)∂z=V(z)(jωC0+G0) \begin{cases} -\frac{\partial V(z)}{\partial z}=I(z)(j\omega L_0+R_0) \\ -\frac{\partial I(z)}{\partial z}=V(z)(j\omega C_0 +G_0) \end{cases} { zV(z)=I(z)(jωL0+R0)zI(z)=V(z)(jωC0+G0)
我们可以发现,传输线方程组等式右侧括号中的部分,分别是传输线水平方向的串联阻抗和垂直方向的并联导纳。

在这里插入图片描述
令:
{ Z=R0+jωL0Y=G0+jωC0 \begin{cases} Z=R_0+j\omega L_0 \\ Y=G_0+j\omega C_0 \end{cases} { Z=R0+jωL0Y=G0+jωC0
则有:
{ −∂V(z)∂z=ZI(z)−∂I(z)∂z=YV(z) \begin{cases} -\frac{\partial V(z)}{\partial z}=ZI(z) \\ -\frac{\partial I(z)}{\partial z}=YV(z) \end{cases} { zV(z)=ZI(z)zI(z)=YV(z)
对上面两等式的等号两侧分别微分,得到:
{ −∂2V(z)∂z2=Z∂I(z)∂z−∂2I(z)∂z2=Y∂V(z)∂z \begin{cases} -\frac{\partial^2V(z)}{\partial z^2}=Z \frac{\partial I(z)}{\partial z}\\ -\frac{\partial^2I(z)}{\partial z^2}=Y\frac{\partial V(z)}{\partial z} \end{cases} { z22V(z)=ZzI(z)z22I(z)=YzV(z)
联立传输线方程与其微分结果,得到:
{ −∂V(z)∂z=ZI(z)−∂V(z)∂z=1Y∂2I(z)∂z2−∂I(z)∂z=YV(z)−∂I(z)∂z=1Z∂2V(z)∂z2 \begin{cases} -\frac{\partial V(z)}{\partial z}=ZI(z) \\ -\frac{\partial V(z)}{\partial z} = \frac{1}{Y}\frac{\partial^2I(z)}{\partial z^2}\\ \\ -\frac{\partial I(z)}{\partial z}=YV(z) \\ -\frac{\partial I(z)}{\partial z}=\frac{1}{Z}\frac{\partial^2V(z)}{\partial z^2} \end{cases} zV(z)=ZI(z)zV(z)=Y1z22I(z)zI(z)=YV(z)zI(z)=Z1z22V(z)
⇓\Downarrow
{ 1Y∂2I(z)∂z2=ZI(z)1Z∂2V(z)∂z2=YV(z) \begin{cases} \frac{1}{Y}\frac{\partial^2I(z)}{\partial z^2}=ZI(z) \\ \frac{1}{Z}\frac{\partial^2V(z)}{\partial z^2}=YV(z) \\ \end{cases} { Y1z22I(z)=ZI(z)Z1z22V(z)=YV(z)
⇓\Downarrow
{ ∂2I(z)∂z2−(YZ)I(z)=0∂2V(z)∂z2−(YZ)V(z)=0 \begin{cases} \frac{\partial^2I(z)}{\partial z^2}-(YZ)I(z)=0 \\ \frac{\partial^2V(z)}{\partial z^2}-(YZ)V(z)=0 \\ \end{cases} { z22I(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值