CodeForces - 459E - Pashmak and Graph ( dp )

题目链接:点击进入
题目

在这里插入图片描述
在这里插入图片描述

题意

带权有向图,求最长路径,满足所经过的边权值严格递增,输出最长长度。

思路

要求按权值严格递增,那么我们可以对边按权值排序,对于边权相等的系列边,若此边起点 u 终点 v ,则 dp更新以 v 为最终路径终点的最大递增长度,由上一不同权值更新后的状态 u 更新而来。
dp [ v ] = max ( dp [ v ] , f [ u ] + 1 ) ;

代码
// Problem: Pashmak and Graph
// Contest: Virtual Judge - CodeForces
// URL: https://vjudge.net/problem/CodeForces-459E
// Memory Limit: 262 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize(3)//O3
//#pragma GCC optimize(2)//O2
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define best 131 
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define lowbit(x) x & -x
#define inf 0x3f3f3f3f
//#define int long long
//#define double long double
//#define rep(i,x,y) for(register int i = x; i <= y;++i)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const int maxn=1e6+10;
const int mod=998244353;
const double eps=1e-9;
const int N=5e3+10;
/*--------------------------------------------*/
inline int read()
{
    int k = 0, f = 1 ;
    char c = getchar() ;
    while(!isdigit(c)){if(c == '-') f = -1 ;c = getchar() ;}
    while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48 ,c = getchar() ;
    return k * f ;
}
/*--------------------------------------------*/

int n,m,dp[maxn],f[maxn];
struct node
{
	int x;
	int y;
	int w;
	bool operator < (const node &t) const
	{
		return w<t.w;
	}
}p[maxn];

int main() 
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);cout.tie(0);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
		scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].w);
	sort(p+1,p+m+1);
	for(int i=1;i<=m;i++)
	{
		int r=i;
		while(r<=m&&p[r].w==p[i].w) r++;
		for(int j=i;j<r;j++)
			dp[p[j].y]=max(dp[p[j].y],f[p[j].x]+1);
		for(int j=i;j<r;j++)
			f[p[j].y]=dp[p[j].y];
		i=r-1;
	}
	int ans=0;
	for(int i=1;i<=n;i++)
		ans=max(ans,dp[i]);
	printf("%d\n",ans);
    return 0;
} 
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值