P3368 【模板】树状数组 2( 区间修改 + 单点查询 )

题目链接:点击进入
题目

在这里插入图片描述

思路

树状数组实现-> 区间修改 + 单点查询
c [ i ] = a ( i - 2 ^ k + 1 ) + … + a [ i ]
( 设节点编号为 i ,那么这个节点管辖的区间有 2 ^ k( 其中 k 为 i 二进制末尾 0 的个数)个元素,且最后一个元素为 a [ i ] 。)
lowbit ( i ) => i & -i 计算 i 对应的 2 ^ k
add 函数更新 i 这位以及它之后的包含它的区间对应的 c 数组
getsum 函数求 1 - i 的和
对于区间修改,c [ i ] 依据 dis [ i ] = a [ i ] - a [ i - 1 ] 差分数组进行更新( 如果学过差分,那么对区间加减操作,可以在原数组的差分数组上操作 )。
单点查询,因为差分数组的前缀和就是原数组,所有对差分数组 getsum 就是原数组。

代码
// Problem: P3368 【模板】树状数组 2
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P3368
// Memory Limit: 125 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize(3)//O3
//#pragma GCC optimize(2)//O2
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define best 131 
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define lowbit(x) x & -x
#define inf 0x3f3f3f3f
//#define int long long
//#define double long double
//#define rep(i,x,y) for(register int i = x; i <= y;++i)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const int maxn=1e6+10;
const int mod=998244353;
const double eps=1e-9;
const int N=5e3+10;
/*--------------------------------------------*/
inline int read()
{
    int k = 0, f = 1 ;
    char c = getchar() ;
    while(!isdigit(c)){if(c == '-') f = -1 ;c = getchar() ;}
    while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48 ,c = getchar() ;
    return k * f ;
}
/*--------------------------------------------*/

int n,m,a[maxn],c[maxn];
void add(int x,int val)
{
	for(int i=x;i<=n;i+=lowbit(i))
		c[i]+=val;
}
int getsum(int x)
{
	int sum=0;
	for(int i=x;i>=1;i-=lowbit(i))
		sum+=c[i];
	return sum;
}

int main() 
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);cout.tie(0);
	cin>>n>>m;
	a[0]=0;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		add(i,a[i]-a[i-1]);
	}
	while(m--)
	{
		int op,x,y,k;
		cin>>op>>x;
		if(op==1)
		{
			cin>>y>>k;
			add(x,k);
			add(y+1,-k);
		}
		else
			cout<<getsum(x)<<endl;
	}
    return 0;
} 
### 关于树状数组2模板与实现 树状数组2通常指的是支持 **区间修改** 和 **单点查询** 或者 **区间查询** 的高级版本。相比于基础版树状数组(仅支持单点修改区间查询),它通过维护两个独立的树状数组来完成更复杂的操作。 #### 基本原理 为了处理区间加法问题,可以引入差分的思想[^3]。具体来说,定义 `ans` 表示实际的前缀和,`ans1` 是第一个树状数组存储的前缀和,`ans2` 是第二个树状数组用于修正偏移量,则有如下关系: \[ \text{ans}[i] = \text{ans1}[i] \times i - \text{ans2}[i]. \] 这种设计使得我们可以高效地执行以下两种操作: 1. 对某个区间的值加上一个常数。 2. 查询某个位置的实际数值或者某一区间的总和。 以下是具体的代码实现: ```cpp #include <bits/stdc++.h> using namespace std; // 定义最大数据范围 const int MAXN = 1e5 + 5; long long c1[MAXN], c2[MAXN]; // 两个树状数组分别记录原始值和偏移量 // lowbit函数计算二进制最低位1对应的十进制值 inline int lowbit(int x) { return x & (-x); } // 更新树状数组c1和c2的操作 void update(long long* tree, int pos, int delta, int n) { while (pos <= n) { tree[pos] += delta; pos += lowbit(pos); } } // 获取树状数组c1或c2的前缀和 long long query(long long* tree, int pos) { long long res = 0; while (pos > 0) { res += tree[pos]; pos -= lowbit(pos); } return res; } // 区间[a,b]增加val void add_range(int a, int b, int val, int n) { update(c1, a, val, n); // 修改a处的影响 update(c1, b + 1, -val, n); // 取消b+1之后的影响 update(c2, a, val * (a - 1), n); // 修改a处的偏移影响 update(c2, b + 1, -val * b, n); // 取消b+1之后的偏移影响 } // 单点查询第k个元素的真实值 long long get_value(int k) { return query(c1, k) * k - query(c2, k); } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, m; cin >> n >> m; // 数组长度n,m次操作 memset(c1, 0, sizeof(c1)); memset(c2, 0, sizeof(c2)); for (int i = 1; i <= n; ++i) { // 初始化数组 int temp; cin >> temp; add_range(i, i, temp, n); // 将初始值转化为区间更新的形式 } for (int i = 0; i < m; ++i) { char op; cin >> op; if (op == 'Q') { // 查询操作 int idx; cin >> idx; cout << get_value(idx) << "\n"; } else if (op == 'C') { // 修改操作 int l, r, v; cin >> l >> r >> v; add_range(l, r, v, n); } } return 0; } ``` 上述代码实现了树状数组2的核心功能——即支持区间修改单点查询的功能。其中的关键在于利用了两个树状数组 `c1` 和 `c2` 来模拟差分数组的效果。 --- ### 性能分析 相比线段树,树状数组2具有更高的效率和更低的空间开销,在许多场景下更适合快速解决问题[^2]。然而需要注意的是,当题目需求更加复杂时(如多维查询、动态开点等),可能仍需借助线段树或其他高级结构。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值