题目:
题意
给你 e 对余数与模数让你求满足条件的最小的解( 解要比所有模数大 )
思路
中国剩余定理( 不互质 ),因为求的是 满足条件的最小值( 不是最小值 ),所以在结果处取模的地方将结果+mod到满足条件即可
代码:
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define INF 0x3f3f3f3f
#define pii pair<int, int>
//#define pdi pair<double,int>
//#define int long long
using namespace std;
typedef long long ll;
typedef unsigned long long llu;
const int maxn=1e6+10;
//const int mod=1e9+7;
ll mod;
ll gcd(ll a,ll b)
{
if(b==0) return a;
else return gcd(b,a%b);
}
ll Extend_Euclid(ll a,ll b,ll &x,ll & y)
{
if(b==0)
{
x=1,y=0;
return a;
}
ll d=Extend_Euclid(b,a%b,x,y);
ll t=x;
x=y;
y=t-a/b*y;
return d;
}
//a在模n乘法下的逆元,没有则返回-1
ll inv(ll a,ll n)
{
ll x,y;
ll t=Extend_Euclid(a,n,x,y);
if(t!=1) return -1;
else return (x%n+n)%n;
}
//将两个方程合并为一个
bool merge(ll a1,ll n1,ll a2,ll n2,ll &a3,ll &n3)
{
ll d=gcd(n1,n2);
ll c=a2-a1;
if(c%d)
return 0;
c=(c%n2+n2)%n2;
c/=d;
n1/=d;
n2/=d;
c*=inv(n1,n2);
c%=n2;
c*=n1*d;
c+=a1;
n3=n1*n2*d;
a3=(c%n3+n3)%n3;
return 1;
}
ll maxx;
//求模线性方程组x=ai(mod ni),ni可以不互质
ll China_Reminder2(int len,ll *a,ll *n)
{
ll a1=a[0],n1=n[0];
ll a2,n2;
for(int i=1;i<len;i++)
{
ll aa,nn;
a2=a[i],n2=n[i];
if(!merge(a1,n1,a2,n2,aa,nn))
return -1;
a1=aa;
n1=nn;
}
mod=n1;
if(a1!=-1)
while(a1<maxx) a1+=n1;
return a1;//正常是(a1%n1+n1)%n1,求最小的解;
}
ll a[1010],b[1010];
int main()
{
int k,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&k) ;
maxx=0;
for(int i=0;i<k;i++)
scanf("%lld %lld",&b[i],&a[i]),maxx=max(maxx,a[i]);
int ans=China_Reminder2(k,b,a);
if(ans==-1) puts("Cannot be determined");
else printf("%lld\n",ans);
}
return 0;
}