Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A’ and sequence B’ are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A’ is a subsequence of A. B’ is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
Input
The input contains multiple test cases.
For each test case, the first line cantains two integers N,M(1≤N,M≤1000)N,M(1≤N,M≤1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
Output
For each test case, output the answer mod 1000000007.
Sample Input
3 2
1 2 3
2 1
3 2
1 2 3
1 2
Sample Output
2
3
dp题,原型是最长公共子序列,只不过这个要求个数。
状态:
状态转移方程:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
using namespace std;
int n,m;
int dp[1003][1003];
int a[1003],b[1003];
int solve(int x,int y)
{
if(dp[x][y]!=-1)
return dp[x][y];
if(a[x]==b[y])
return dp[x][y]=(solve(x,y-1)+solve(x-1,y)+1)%mod;
int temp=solve(x,y-1)+solve(x-1,y)-solve(x-1,y-1);
if(temp<0)
return dp[x][y]=(temp+mod)%mod;
else
return dp[x][y]=temp%mod;
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<=m;i++)
scanf("%d",b+i);
memset(dp,-1,sizeof(dp));
for(int i=0;i<=1000;i++)
dp[i][0]=0,dp[0][i]=0;
printf("%d\n",solve(n,m));
}
return 0;
}
本文探讨了一道经典的动态规划问题——求两个序列的最长公共子序列的数量,并提供了一个具体的实现示例。通过状态转移方程,有效地解决了该问题。
528

被折叠的 条评论
为什么被折叠?



