[dfs序 线段树] LOJ#6276. 果树

本文介绍了一种结合树形DP与线段树的数据结构优化算法,用于解决特定类型的组合计数问题。通过枚举相同颜色节点并利用DFS序进行处理,实现了高效的方案搜索。适用于需要快速查询及更新子树属性的问题。

考虑相同颜色的两种节点,这两个节点会把树分成三部分(左、中、右),左部分的点不能和右部分的点组成一种方案

枚举每一个点,只要求出有多少个点能和它组成合法点对就行了

枚举每一对颜色相同的节点,在dfs序上搞一搞就行了

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef pair<int,int> par;
typedef long long ll;

const int N=100010;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}

inline void read(int &x){
  char c=nc(); x=0;
  for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}

int n,cnt,a[N],G[N],l[N],r[N];
vector<int> c[N];
vector<par> de[N],ad[N];

struct edge{
  int t,nx;
}E[N<<1];

inline void addedge(int x,int y){
  E[++cnt].t=y; E[cnt].nx=G[x]; G[x]=cnt;
  E[++cnt].t=x; E[cnt].nx=G[y]; G[y]=cnt;
}

int t,fa[N][20],dpt[N];

void dfs(int x,int f){
  l[x]=++t; *fa[x]=f; dpt[x]=dpt[f]+1;
  for(int i=1;i<=16;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
  for(int i=G[x];i;i=E[i].nx)
    if(E[i].t!=f) dfs(E[i].t,x);
  r[x]=t;
}

int mn[N<<2],tot[N<<2],tag[N<<2];

void Build(int g,int l,int r){
  tot[g]=r-l+1;
  if(l==r) return ;
  int mid=l+r>>1;
  Build(g<<1,l,mid); Build(g<<1|1,mid+1,r);
}

inline int kfa(int x,int y){
  for(int i=16;~i;i--)
    if(y>>i&1) x=fa[x][i];
  return x;
}

inline void add(int l1,int r1,int l2,int r2){
  ad[l1].push_back(par(l2,r2));
  de[r1+1].push_back(par(l2,r2));
  ad[l2].push_back(par(l1,r1));
  de[r2+1].push_back(par(l1,r1));
}

inline void add(int x,int y){
  if(l[x]>l[y]) swap(x,y);
  if(r[x]>=r[y]){
    int u=kfa(y,dpt[y]-dpt[x]-1);
    add(1,l[u]-1,l[y],r[y]);
    if(r[u]<n) add(r[u]+1,n,l[y],r[y]);
  }
  else add(l[x],r[x],l[y],r[y]);
}

inline void Push(int g){
  if(tag[g]){
    tag[g<<1]+=tag[g];
    tag[g<<1|1]+=tag[g];
    mn[g<<1]+=tag[g];
    mn[g<<1|1]+=tag[g];
    tag[g]=0;
  }
}

void Modify(int g,int l,int r,int L,int R,int x){
  if(l==L && r==R){
    mn[g]+=x; tag[g]+=x; return ;
  }
  int mid=L+R>>1; Push(g);
  if(r<=mid) Modify(g<<1,l,r,L,mid,x);
  else if(l>mid) Modify(g<<1|1,l,r,mid+1,R,x);
  else Modify(g<<1,l,mid,L,mid,x),Modify(g<<1|1,mid+1,r,mid+1,R,x);
  mn[g]=min(mn[g<<1],mn[g<<1|1]);
  tot[g]=(mn[g<<1]==mn[g]?tot[g<<1]:0)+(mn[g<<1|1]==mn[g]?tot[g<<1|1]:0);
}

int main(){
  read(n);
  for(int i=1;i<=n;i++)
    read(a[i]),c[a[i]].push_back(i);
  for(int i=1,x,y;i<n;i++)
    read(x),read(y),addedge(x,y);
  dfs(1,0); Build(1,1,n);
  for(int i=1;i<=n;i++){
    for(int j=0;j<c[i].size();j++)
      for(int k=j+1;k<c[i].size();k++)
    add(c[i][j],c[i][k]);
  }
  ll ans=0;
  for(int i=1;i<=n;i++){
    for(auto u : ad[i])
      Modify(1,u.first,u.second,1,n,1);
    for(auto u : de[i])
      Modify(1,u.first,u.second,1,n,-1);
    if(!mn[1]) ans+=tot[1];
  }
  ans=ans+n>>1;
  printf("%lld\n",ans);
  return 0;
}
可并堆是一种支持合并操作的堆数据结构,常见的可并堆有左偏树、斜堆、二项堆等。对于 LOJ#P188 可并堆的问题,下面以左偏树为例给出解题思路和代码实现。 ### 解题思路 1. **左偏树的性质**: - 左偏树是一种可并堆,它满足堆性质(小根堆或大根堆),即每个节点的值小于(或大于)其子节点的值。 - 左偏树还满足左偏性质,即每个节点的左子树的距离(到最近的叶子节点的距离)不小于右子树的距离。 2. **合并操作**: - 合并两个左偏树时,比较两个根节点的值,将值较大的根节点的树合并到值较小的根节点的右子树中。 - 合并后,检查右子树的距离是否大于左子树的距离,如果是,则交换左右子树,以维护左偏性质。 3. **插入操作**: - 插入一个新节点可以看作是合并一个只有一个节点的左偏树和原左偏树。 4. **删除操作**: - 删除根节点后,将其左右子树合并成一个新的左偏树。 ### 代码实现 ```python class Node: def __init__(self, val): self.val = val self.left = None self.right = None self.dist = 0 def merge(x, y): if not x: return y if not y: return x if x.val > y.val: x, y = y, x x.right = merge(x.right, y) if not x.left or (x.right and x.left.dist < x.right.dist): x.left, x.right = x.right, x.left x.dist = (x.right.dist + 1) if x.right else 0 return x def insert(root, val): new_node = Node(val) return merge(root, new_node) def delete(root): return merge(root.left, root.right) # 示例使用 root = None root = insert(root, 3) root = insert(root, 1) root = insert(root, 5) print(root.val) # 输出堆顶元素 root = delete(root) print(root.val) # 输出删除堆顶元素后的堆顶元素 ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值