简要回顾一下基本 RAG 方案。
一、融合检索解析
融合检索方法涉及在检索增强生成(RAG)系统的检索阶段中融合或聚合多个信息流。回顾一下,在检索阶段,检索器——一个信息检索引擎——接收用户对大型语言模型(LLM)的原始查询,将其编码为向量数值表示,并用它在庞大的知识库中搜索与查询强烈匹配的文档。之后,通过添加来自检索到的文档的结果上下文信息来增强原始查询,最后将增强后的输入发送给LLM以生成响应。
通过在检索阶段应用融合方案,可以在原始查询的基础上添加更加连贯和上下文相关的背景信息,从而进一步改善由LLM生成的最终响应。融合检索利用从多个提取文档(搜索结果)中获取的知识,并将其组合成更有意义和准确的上下文。然而,我们已经熟悉的经典RAG方案也可以从知识库中检索多个文档,而不仅仅是单一文档。那么这两种方法之间有什么区别呢?
经典RAG与融合检索之间的关键区别在于如何处理和整合检索到的多个文档以形成最终响应。在经典的RAG中,检索到的文档内容只是简单地串联起来,或者最多是抽取式摘要,然后作为额外的上下文输入LLM以生成响应,不涉及高级融合技术的应用。而在融合检索中,则使用更专业的机制来跨多个文档组合相关信息。这种融合过程可以发生在增强阶段(检索阶段)或甚至是在生成阶段。
-
增强阶段中的融合
包括在将多个文档传递给生成器之前应用重新排序、过滤或合并的技术。两个例子是重排序和聚合:重排序指的是根据相关性对文档进行评分和排序后再与用户提示一起输入模型;聚合则是将每个文档中最相关的部分合并成一个单独的上下文。聚合通过经典的信息检索方法实现,如TF-IDF(词频-逆文档频率)、嵌入操作等。
-
生成阶段中的融合
涉及到LLM(生成器)独立处理每一个检索到的文档——包括用户提示——并在生成最终响应时融合数个处理任务的信息。广义上讲,RAG中的增强阶段成为了生成阶段的一部分。这一类别中的一种常见方法是解码器中的融合(FiD),它允许LLM分别处理每个检索到的文档,然后在生成最终响应时结合它们的见解。
重排序是一种最简单但有效的融合方法,能够有意义地结合来自多个检索来源的信息。接下来的部分简要解释了它是如何工作的。
二、重排序的工作原理
在重排序过程中,检索器获取的初始文档集会被重新排序,以提高与用户查询的相关性,从而更好地满足用户需求并提升整体输出质量。检索器将获取的文档传递给一个称为“排序器”的算法组件,该组件根据诸如学习到的用户偏好等标准重新评估检索结果,并对文档进行排序,目的是最大化呈现给特定用户的结果相关性。诸如加权平均或其他形式的评分机制被用来组合和优先排列排名最高的文档,使得排名靠前的文档内容比排名较低的文档内容更有可能成为最终合并上下文的一部分。
下图展示了重排序机制的工作原理:
为了更好地理解重排序,我们以东亚旅游为背景描述一个例子。想象一位旅行者向一个RAG系统查询“亚洲自然爱好者最佳目的地”。初始检索系统可能会返回一系列文档,包括通用的旅行指南、关于亚洲热门城市的文章,以及对自然公园的推荐。然而,一个重排序模型可以利用额外的旅行者特定偏好和上下文数据(例如偏好的活动、之前喜欢的活动或去过的目的地)对这些文档重新排序,从而优先展示对该用户最相关的内容。它可能会突出一些宁静的国家公园、鲜为人知的徒步小径以及生态友好的旅行路线,而这些可能不会出现在大多数人的推荐列表前列。通过这种方式,它为像目标用户这样的自然爱好者游客提供了“直击要点”的结果。
总之,重排序基于额外的用户相关性标准重新组织多个检索到的文档,集中关注排名靠前的文档内容提取过程,从而提高后续生成响应的相关性。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方优快云官方认证二维码
,免费领取【保证100%免费
】