描述
给定 n 种物品, 每种物品都有无限个. 第 i 个物品的体积为 A[i], 价值为 V[i].
再给定一个容量为 m 的背包. 问可以装入背包的最大价值是多少?
题目链接:https://www.lintcode.com/problem/440/description
方法1 : 递归
#include "iostream"
#include "vector"
#include <cstring>
using namespace std;
int process(vector<int> &A, vector<int> &V, int index, int m){
if(index == A.size()){
return 0;
}
int value = 0;
int i = 0;
for(;i * A[index] <= m; i++){
value = max(value, i * V[index] + process(A, V, index + 1, m - i * A[index]));
}
return value;
}
int main(){
vector<int> A = {1};
vector<int> V = {1};
int m = 10;
cout << process(A, V, 0, m);
}
方法二 : dp
class Solution {
public:
/**
* @param A: an integer array
* @param V: an integer array
* @param m: An integer
* @return: an array
*/
int backPackIII(vector<int> &A, vector<int> &V, int m) {
// write your code here
int dp[A.size() + 1][m + 1];
memset(dp, 0, sizeof(dp));
for(int i = A.size() - 1; i >= 0; i--){
for(int j = 0; j <= m; j++){
int k = 0;
for(; k * A[i] <= j; k++){
dp[i][j] = max(dp[i][j], k * V[i] + dp[i + 1][j - k * A[i]]);
}
}
}
return dp[0][m];
}
};