多操作线段树

段元芳面临一个包含四种操作的数列难题:加法、乘法、赋值和幂次求和。通过区间操作更新数列,并求解特定区间的幂次和,所有计算需取模。挑战在于高效处理大量操作,涉及数据结构和算法优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformation

 

Yuanfang is puzzled with the question below: 
There are n integers, a 1, a 2, …, a n. The initial values of them are 0. There are four kinds of operations. 
Operation 1: Add c to each number between a x and a y inclusive. In other words, do transformation a k<---a k+c, k = x,x+1,…,y. 
Operation 2: Multiply c to each number between a x and a y inclusive. In other words, do transformation a k<---a k×c, k = x,x+1,…,y. 
Operation 3: Change the numbers between a x and a y to c, inclusive. In other words, do transformation a k<---c, k = x,x+1,…,y. 
Operation 4: Get the sum of p power among the numbers between a x and a y inclusive. In other words, get the result of a x p+a x+1 p+…+a y p. 
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 

Input

There are no more than 10 test cases. 
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000. 
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3) 
The input ends with 0 0. 

Output

For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.

Sample Input

5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

307
7489
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <cmath>
#include <vector>
using namespace std;
const int NUM=100005;
const int mod=10007;
struct point
{
    int l,r,w1,w2,w3,f1,f2,f3;
}tree[NUM*4];
int LL,RR,val,ans;
void build(int k,int LL,int RR)
{
    tree[k].l=LL,tree[k].r=RR;
    tree[k].f1=tree[k].f3=tree[k].w1=tree[k].w2=tree[k].w3=0;
    tree[k].f2=1;
    if(tree[k].l==tree[k].r){
        return;
    }
    int bet=(tree[k].l+tree[k].r)/2;
    build(k*2,LL,bet);
    build(k*2+1,bet+1,RR);
}
int aaa(int a,int b)
{
    int bbb=1;
    for(int i=0;i<b;i++){
        bbb=bbb*a%mod;
    }
    return bbb;
}
void down(int k)
{
    if(tree[k].l==tree[k].r)
        return;
    if(tree[k].f3){
        tree[k*2].f3=tree[k*2+1].f3=tree[k].f3;
        tree[k*2].w1=((tree[k*2].r-tree[k*2].l+1)*tree[k].f3)%mod;
        tree[k*2+1].w1=((tree[k*2+1].r-tree[k*2+1].l+1)*tree[k].f3)%mod;
        tree[k*2].w2=((tree[k*2].r-tree[k*2].l+1)*aaa(tree[k].f3,2))%mod;
        tree[k*2+1].w2=((tree[k*2+1].r-tree[k*2+1].l+1)*aaa(tree[k].f3,2))%mod;
        tree[k*2].w3=((tree[k*2].r-tree[k*2].l+1)*aaa(tree[k].f3,3))%mod;
        tree[k*2+1].w3=((tree[k*2+1].r-tree[k*2+1].l+1)*aaa(tree[k].f3,3))%mod;
        tree[k].f3=tree[k*2].f1=tree[k*2+1].f1=0;
        tree[k*2].f2=tree[k*2+1].f2=1;
    }
    if(tree[k].f2!=1){
        if(tree[k*2].f3) down(k*2);
        if(tree[k*2+1].f3) down(k*2+1);
        tree[k*2].f2=(tree[k*2].f2*tree[k].f2)%mod;
        tree[k*2+1].f2=(tree[k*2+1].f2*tree[k].f2)%mod;
        tree[k*2].w1=(tree[k*2].w1*tree[k].f2)%mod;
        tree[k*2+1].w1=(tree[k*2+1].w1*tree[k].f2)%mod;
        tree[k*2].w2=(tree[k*2].w2*aaa(tree[k].f2,2))%mod;
        tree[k*2+1].w2=(tree[k*2+1].w2*aaa(tree[k].f2,2))%mod;
        tree[k*2].w3=(tree[k*2].w3*aaa(tree[k].f2,3))%mod;
        tree[k*2+1].w3=(tree[k*2+1].w3*aaa(tree[k].f2,3))%mod;
        tree[k*2].f1=(tree[k*2].f1*tree[k].f2)%mod;
        tree[k*2+1].f1=(tree[k*2+1].f1*tree[k].f2)%mod;
        tree[k].f2=1;
    }
    if(tree[k].f1){
        if(tree[k*2].f3||tree[k*2].f2!=1) down(k*2);
        if(tree[k*2+1].f3||tree[k*2+1].f2!=1) down(k*2+1);
        tree[k*2].f1=(tree[k*2].f1+tree[k].f1)%mod;
        tree[k*2+1].f1=(tree[k*2+1].f1+tree[k].f1)%mod;
        tree[k*2].w3=(tree[k*2].w3+3*tree[k*2].w2*tree[k].f1+3*tree[k*2].w1*aaa(tree[k].f1,2)+(tree[k*2].r-tree[k*2].l+1)*aaa(tree[k].f1,3))%mod;
        tree[k*2+1].w3=(tree[k*2+1].w3+3*tree[k*2+1].w2*tree[k].f1+3*tree[k*2+1].w1*aaa(tree[k].f1,2)+(tree[k*2+1].r-tree[k*2+1].l+1)*aaa(tree[k].f1,3))%mod;
        tree[k*2].w2=(tree[k*2].w2+2*tree[k*2].w1*tree[k].f1+(tree[k*2].r-tree[k*2].l+1)*aaa(tree[k].f1,2))%mod;
        tree[k*2+1].w2=(tree[k*2+1].w2+2*tree[k*2+1].w1*tree[k].f1+(tree[k*2+1].r-tree[k*2+1].l+1)*aaa(tree[k].f1,2))%mod;
        tree[k*2].w1=((tree[k*2].r-tree[k*2].l+1)*tree[k].f1+tree[k*2].w1)%mod;
        tree[k*2+1].w1=((tree[k*2+1].r-tree[k*2+1].l+1)*tree[k].f1+tree[k*2+1].w1)%mod;
        tree[k].f1=0;
    }
}
void change(int k,int ch)
{
    if(LL<=tree[k].l&&RR>=tree[k].r){
        down(k);
        if(ch==1){
            tree[k].f1=(val+tree[k].f1)%mod;
            tree[k].w3=(tree[k].w3+3*tree[k].w2*val+3*tree[k].w1*aaa(val,2)+(tree[k].r-tree[k].l+1)*aaa(val,3))%mod;
            tree[k].w2=(tree[k].w2+2*tree[k].w1*val+(tree[k].r-tree[k].l+1)*aaa(val,2))%mod;
            tree[k].w1=((tree[k].r-tree[k].l+1)*val+tree[k].w1)%mod;
            return;
        }
        if(ch==2){
            tree[k].f2=(val*tree[k].f2)%mod;
            tree[k].w1=(tree[k].w1*val)%mod;
            tree[k].w2=(tree[k].w2*aaa(val,2))%mod;
            tree[k].w3=(tree[k].w3*aaa(val,3))%mod;
            return;
        }
        if(ch==3){
            tree[k].f3=val;
            tree[k].w1=(tree[k].r-tree[k].l+1)*val%mod;
            tree[k].w2=(tree[k].r-tree[k].l+1)*aaa(val,2)%mod;
            tree[k].w3=(tree[k].r-tree[k].l+1)*aaa(val,3)%mod;
            return;
        }
    }
    if(tree[k].f1||tree[k].f2!=1||tree[k].f3) down(k);
    int bet=(tree[k].l+tree[k].r)/2;
    if(LL<=bet) change(k*2,ch);
    if(RR>bet) change(k*2+1,ch);
    tree[k].w1=(tree[k*2].w1+tree[k*2+1].w1)%mod;
    tree[k].w2=(tree[k*2].w2+tree[k*2+1].w2)%mod;
    tree[k].w3=(tree[k*2].w3+tree[k*2+1].w3)%mod;
}
void ask(int k,int ch)
{
    if(LL<=tree[k].l&&RR>=tree[k].r){
        if(ch==1)
            ans=(tree[k].w1+ans)%mod;
        if(ch==2)
            ans=(tree[k].w2+ans)%mod;
        if(ch==3)
            ans=(tree[k].w3+ans)%mod;
        return;
    }
    if(tree[k].f1||tree[k].f2!=1||tree[k].f3) down(k);
    int bet=(tree[k].l+tree[k].r)/2;
    if(LL<=bet) ask(k*2,ch);
    if(RR>bet) ask(k*2+1,ch);
}
int main()
{
    int n,m;
    while(scanf("%d %d",&n,&m)!=-1){
        if(n==0&&m==0)
            break;
        build(1,1,n);
        int ch;
        for(int i=0;i<m;i++){
            scanf("%d %d %d %d",&ch,&LL,&RR,&val);
            if(ch==4){
                ans=0;
                ask(1,val);
                printf("%d\n",ans);
            }
            else{
                change(1,ch);
            }
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值