转自:https://www.cnblogs.com/wuyiqi/archive/2011/12/25/2301071.html
题意:
首先给你N只老鼠,M个操作;最开始一只老鼠一个组;
输入0,输入两个数i,j;使得i老鼠与j老鼠的组合并;
输入1,输入一个数K,求第K大的组有多少只老鼠。
思路:
第K大就是第n-k+1小,用树状数组求第K小。
觉得:https://www.cnblogs.com/wuyiqi/archive/2011/12/25/2301071.html
讲的很好,下面摘录一些。
树状数组经典图片:
现在假设要求sum[a]的值,一般我们都是从后往前求和,如a=15
15-lowbit(15)=14;
14-lowbit(14)=12;
12-lowbit(12)=8;
8-lowbit(b)=0;
答案就是sum[15]+sum[14]+sum[12]+sum[8];
现在我们可以这样来求,从不超过15的只有一个1的最大二进制数开始,也可以理解为指数从log(15)取整开始,即3,2的3次等于8,依次加上2的2次,2的1次,2的0次,数字依次为8,12,14,15,也就是把普通的求和过程反向。
好了,方向求和有什么好处呢?
在求第k大的数的时候就派上用场了,虽然还有很多其他方法可以解决第k大的数,但树状数组无疑是最优雅的方法了
int find_kth(int k)//太神奇了(大概是以前没有完全领会),log(n)复杂度
{
int ans = 0, cnt = 0, i;
for (i = 20; i >= 0; i--)//利用二进制的思想,把答案用一个二进制数来表示
{
ans += (1 << i);
if (ans >= maxn|| cnt + c[ans] >= k)
//这里大于等于k的原因是可能会有很多个数都满足cnt + c[ans] >= k,所以找的是最大的满足cnt+c[ans]<k的ans
ans -= (1 << i);
else
cnt += c[ans];//cnt用来累加比当前ans小的总组数
}//求出的ans是累加和(即小于等于ans的数的个数)小于k的情况下ans的最大值,所以ans+1就是第k大的数
return ans + 1;
}
完整代码:
#include<stdio.h>
#include<string.h>
#define maxn 300000
int a[maxn],c[maxn],p[maxn];//值为i的数有i个
int find(int x){return x==p[x] ? x : p[x]=find(p[x]);}
int lowbit(int x){
return x&-x;
}
void update(int x,int d){
for(;x<=maxn;x+=lowbit(x))
c[x]+=d;
}//因为是从左往右手动求和了,所以也不需要sum()操作了
int find_kth(int k)//太神奇了(大概是以前没有完全领会),log(n)复杂度
{
int ans = 0, cnt = 0, i;
for (i = 20; i >= 0; i--)//利用二进制的思想,把答案用一个二进制数来表示
{
ans += (1 << i);
if (ans >= maxn|| cnt + c[ans] >= k)
//这里大于等于k的原因是可能大小为ans的数不在c[ans]的控制范围之内,所以这里求的是 < k
ans -= (1 << i);
else
cnt += c[ans];//cnt用来累加比当前ans小的总组数
}//求出的ans是累加和(即小于等于ans的数的个数)小于k的情况下ans的最大值,所以ans+1就是第k大的数
return ans + 1;
}
/*
因为要求第k小的数,所以要从左往右加过去,
上述过程其实就是把树状数组的求和操作逆向,从左往右求和,
边求和边判断控制范围内比当前值要小的数是否超过或等于k,如果是则跳回兄弟节点(ans-=(1<<i))
如8+4=12,假如12不满足要求,则重新变回8,下一次就加2,8+2=10,即跳到10控制的位置
上述累加过程不会重复计算,因为
比如15=8+4+2+1,数字依次为8 12 14 15,每次累加后的值都与前面的值无关,i小于其二进制末尾0的个数
即c[8] 、c[12] 、c[14]、 c[15]相加的话不会重复计算,再如11=8+2+1;数字依次为8 10 11,c[8],c[10],c[11]
各自控制着自己的范围,不会重复累加,所以就可以用cnt来累加前面的结果,最后cnt+c[ans]就表示了值<=ans的个数
简言之:上述的各个数字两两间控制的范围不会相交
*/
int main()
{
int i,n,m,q,x,y,k,l,r;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++) p[i]=i;
for(i=1;i<=n;i++) a[i]=1;
update(1,n);//初始状态值为1的数有n个
int num=n;
for(i=1;i<=m;i++)
{
scanf("%d",&q);
if(q==0)
{
scanf("%d%d",&x,&y);
x=find(x);
y=find(y);
if(x==y) continue;
update(a[x],-1);
update(a[y],-1);
update(a[x]+a[y],1);
p[y]=x;
a[x]+=a[y];
num--;//合并集合
}
else
{
scanf("%d",&k);
k=num-k+1;//转换为找第k小的数
printf("%d\n",find_kth(k));
}
}
return 0;
}