LUCENE创建索引【鸡蛋】

本文介绍了Lucene的索引机制,包括文档、字段、分析器等关键概念,并通过示例展示了如何创建索引和进行搜索。Lucene采用反向索引机制,能高效处理大量文本数据。

          索引是现代搜索引擎的核心,建立索引的过程就是把源数据处理成非常方便查询的索引文件的过程。为什么索引这么重要呢,试想你现在要在大量的文档中搜索含有某个关键词的文档,那么如果不建立索引的话你就需要把这些文档顺序的读入内存,然后检查这个文章中是不是含有要查找的关键词,这样的话就会耗费非常多的时间,想想搜索引擎可是在毫秒级的时间内查找出要搜索的结果的。这就是由于建立了索引的原因,你可以把索引想象成这样一种数据结构,他能够使你快速的随机访问存储在索引中的关键词,进而找到该关键词所关联的文档。Lucene 采用的是一种称为反向索引(inverted index)的机制。反向索引就是说我们维护了一个词 / 短语表,对于这个表中的每个词 / 短语,都有一个链表描述了有哪些文档包含了这个词 / 短语。这样在用户输入查询条件的时候,就能非常快的得到搜索结果。我们将在本系列文章的第二部分详细介绍 Lucene 的索引机制,由于 Lucene 提供了简单易用的 API,所以即使读者刚开始对全文本进行索引的机制并不太了解,也可以非常容易的使用 Lucene 对你的文档实现索引。

对文档建立好索引后,就可以在这些索引上面进行搜索了。搜索引擎首先会对搜索的关键词进行解析,然后再在建立好的索引上面进行查找,最终返回和用户输入的关键词相关联的文档。

 

建立索引索引:

为了对文档进行索引,Lucene 提供了五个基础的类,他们分别是 Document, Field, IndexWriter, Analyzer, Directory。下面我们分别介绍一下这五个类的用途:

Document

Document 是用来描述文档的,这里的文档可以指一个 HTML 页面,一封电子邮件,或者是一个文本文件。一个 Document 对象由多个 Field 对象组成的。可以把一个 Document 对象想象成数据库中的一个记录,而每个 Field 对象就是记录的一个字段。

Field

Field 对象是用来描述一个文档的某个属性的,比如一封电子邮件的标题和内容可以用两个 Field 对象分别描述。

Analyzer

在一个文档被索引之前,首先需要对文档内容进行分词处理,这部分工作就是由 Analyzer 来做的。Analyzer 类是一个抽象类,它有多个实现。针对不同的语言和应用需要选择适合的 Analyzer。Analyzer 把分词后的内容交给 IndexWriter 来建立索引。

IndexWriter

IndexWriter 是 Lucene 用来创建索引的一个核心的类,他的作用是把一个个的 Document 对象加到索引中来。

Directory

这个类代表了 Lucene 的索引的存储的位置,这是一个抽象类,它目前有两个实现,第一个是 FSDirectory,它表示一个存储在文件系统中的索引的位置。第二个是 RAMDirectory,它表示一个存储在内存当中的索引的位置。

         //索引文件的存放位置
            string INDEX_FILE_PATH = "C:\\wwwroot\\Test\\" + DateTime.Now.ToString("yyyyMMdd") + "_" + DateTime.Now.Ticks.ToString();
            //实例化一个索引器(需要三个参数)
            //1、path  索引器的存放路径
            //2、Analyzer  一个分析器
            //3、是否在索引目录下重新创建索引文件,false的话在原有文件上叠加
            IndexWriter indexwrite = new IndexWriter(INDEX_FILE_PATH, new StandAnalyzer(), true);
                    //Document可以看做是数据库中一条记录,field可以看做为一个字段
                    Document doc = new Document();
                    //向doc容器里添加一个field,"pkid"为field的名字,第二个参数为其值,第三个参数为是否存储,第四个参数为是否索引
                    doc.Add(new Field("pkid", “数据1”, Field.Store.YES, Field.Index.UN_TOKENIZED));//存储该field,不创建索引
                    doc.Add(new Field("title",“数据2”, Field.Store.YES, Field.Index.UN_TOKENIZED));//存储该field,不创建索引
                    doc.Add(new Field("summary", "数据1",Field.Store.YES, Field.Index.UN_TOKENIZED));//存储该field,创建索引
                    indexwrite.AddDocument(doc);


                    indexwrite.Optimize();
                    indexwrite.Close();//创建索引成功,关闭索引

          

     我们注意到类 IndexWriter 的构造函数需要三个参数,第一个参数指定了所创建的索引要存放的位置,他可以是一个 File 对象,也可以是一个 FSDirectory 对象或者 RAMDirectory 对象。第二个参数指定了 Analyzer 类的一个实现,也就是指定这个索引是用哪个分词器对文挡内容进行分词。第三个参数是一个布尔型的变量,如果为 true 的话就代表创建一个新的索引,为 false 的话就代表在原来索引的基础上进行操作。接着程序遍历了目录下面的所有文本文档,并为每一个文本文档创建了一个 Document 对象。然后把文本文档的两个属性:路径和内容加入到了两个 Field 对象中,接着在把这两个 Field 对象加入到 Document 对象中,最后把这个文档用 IndexWriter 类的 add 方法加入到索引中去。这样我们便完成了索引的创建。接下来我们进入在建立好的索引上进行搜索的部分。

 

 

单向双向V2G 环境下分布式电源与电动汽车充电站联合配置方法(Matlab代码实现)内容概要:本文介绍了在单向和双向V2G(Vehicle-to-Grid)环境下,分布式电源与电动汽车充电站的联合配置方法,并提供了基于Matlab的代码实现。研究涵盖电力系统优化、可再生能源接入、电动汽车充放电调度、储能配置及微电网经济调度等多个关键技术领域,重点探讨了在不同电价机制和需求响应策略下,如何通过智能优化算法实现充电站与分布式电源的协同规划与运行优化。文中还展示了多种应用场景,如有序充电调度、鲁棒优化模型、多目标优化算法(如NSGA-II、粒子群算法)在电力系统中的实际应用,体现了较强的工程实践价值和技术综合性。; 适合人群:具备电力系统、新能源、智能优化算法等相关背景的科研人员、研究生及从事能源系统规划与优化的工程技术人员;熟悉Matlab/Simulink仿真工具者更佳。; 使用场景及目标:①用于科研项目中关于电动汽车与分布式电源协同配置的模型构建与仿真验证;②支持毕业论文、期刊投稿中的案例分析与算法对比;③指导实际电力系统中充电站布局与能源调度的优化设计。; 阅读建议:建议结合文中提供的Matlab代码与具体案例进行同步实践,重点关注优化模型的数学建模过程与算法实现细节,同时可参考文末网盘资源获取完整代码与数据集以提升学习效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值