题意:
题目链接:https://vjudge.net/problem/UVALive-3490
给出一个字符串S和前n个英文大写字母,组成一个字符串,当构造出子串S时停止,则该字符串期望长度是多少。
思路:
AC自动机+高斯消元,与HDU 5955一个套路:http://blog.youkuaiyun.com/bahuia/article/details/53034010
这题坑的时直接用double的高斯消元误差太大,连样例都出不来,必须改成整形的高斯消元,学习别人的写法,存个板子。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 100;
struct ACauto {
int next[MAXN][26], fail[MAXN], end[MAXN];
int root, sz;
int newnode() {
for (int i = 0; i < 26; i++)
next[sz][i] = -1;
end[sz++] = 0;
return sz - 1;
}
void init() {
sz = 0;
root = newnode();
}
int idx(char c) {
return c - 'A';
}
void insert(char *buf) {
int len = strlen(buf);
int now = root;
for (int i = 0; i < len; i++) {
int id = idx(buf[i]);
if (next[now][id] == -1)
next[now][id] = newnode();
now = next[now][id];
}
end[now]++;
}
void build() {
queue <int> Q;
fail[root] = root;
for (int i = 0; i < 26; i++) {
if (next[root][i] == -1)
next[root][i] = root;
else {
fail[next[root][i]] = root;
Q.push(next[root][i]);
}
}
while (!Q.empty()) {
int now = Q.front(); Q.pop();
for (int i = 0; i < 26; i++) {
if (next[now][i] == -1)
next[now][i] = next[fail[now]][i];
else {
fail[next[now][i]] = next[fail[now]][i];
Q.push(next[now][i]);
}
}
}
}
} ac;
int equ, var;
LL a[MAXN][MAXN], x[MAXN];
void Gauss()//表示用double版本的高斯消元求解,最后还原成整数的方法因为误差跪掉了....
{
for(int i = 0; i < equ; i++)
{
int r = i;
while(r < equ && !a[r][i]) r++;
if(r != i)//找到第r列不是0的之后交换至r行
{
for(int j = 0; j < var; j++) swap(a[r][j], a[i][j]);
swap(x[r], x[i]);
}
for(int k = i + 1; k < equ; k++)
if(a[k][i])//将下面所有行的第i列变成0
{
LL tmp = a[k][i];//两组互相乘上对面的第i列的数作差即可
for(int j = i; j < var; j++) a[k][j] = a[k][j] * a[i][i] - tmp*a[i][j];
x[k] = x[k]*a[i][i] - tmp*x[i];
}
}
//对剩下的三角矩阵递推求解
for(int i = equ - 1; i >= 0; i--)
{
for(int j = i + 1; j < var; j++)
x[i] -= x[j]*a[i][j];
x[i] /= a[i][i];
}
}
char str[MAXN];
int main() {
//freopen("in.txt", "r", stdin);
int T, cs = 0;
scanf("%d", &T);
while (T--) {
int n;
scanf("%d%s", &n, str);
ac.init();
ac.insert(str);
ac.build();
equ = var = ac.sz;
memset(a, 0, sizeof(a));
memset(x, 0, sizeof(x));
//cout << ac.sz << endl;
for (int u = 0; u < ac.sz - 1; u++) {
a[u][u] = n;
for (int id = 0; id < n; id++) {
int v = ac.next[u][id];
a[u][v] -= 1;
}
a[u][var] = n;
x[u] = n;
}
a[equ - 1][var - 1] = 1;
a[equ - 1][var] = 0;
x[equ - 1] = 0;
Gauss();
printf("Case %d:\n%lld\n", ++cs, x[0]);
if (T) puts("");
}
return 0;
}