自然语言处理项目之文档主题分类

该博客介绍了如何使用LDA(Latent Dirichlet Allocation)模型对希拉里的电子邮件进行主题分类。首先,通过数据预处理清理文本,然后利用gensim库构建词袋模型和LDA模型,最后展示并解释了生成的主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


#希拉里右键门,文档主题分类。LDA模型,数据读取还有点问题
#数据来源:请联系公众号:湾区人工智能
import numpy as np
import pandas as pd
import re
import codecs
#UnicodeEncodeError: 'mbcs' codec can't encode characters in position 0--1: invalid character
df = pd.read_csv("D:/自然语言处理/Lecture_3 LDA 主题模型课件与资料/Lecture_3 LDA 主题模型课件与资料/主题模型课件与资料/input/HillaryEmails.csv",encoding='utf-8')
# 原邮件数据中有很多Nan的值,直接扔了。
df = df[['Id','ExtractedBodyText']].dropna()
def clean_email_text(text):
    text = text.replace('\n'," ") #新行,我们是不需要的
    text = re.sub(r"-", " ", text) #把 "-" 的两个单词,分开。(比如:july-edu ==> july edu)
    text = re.sub(r"\d+/\d+/\d+", "", text) #日期,对主体模型没什么意义
    text = re.sub(r"[0-2]?[0-9]:[0-6][0-9]", "", text) #时间,没意义
    text = re.sub(r"[\w]+@
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值