首先通过摄像头采集图像,用Otsu方法进行二值化处理,然后找出最大两个连通区域,此处默认有手和脸,最后通过指尖检测算法,将脸部排除。
#include "cxcore.h"
#include "math.h"
#include <cmath>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <sstream>
#include <time.h>
#include <iostream>
#include <cstring>
#include <cv.h>
#include <highgui.h>
#include <assert.h>
using namespace std;
using namespace cv;
void cvThresholdOtsu(IplImage* src,IplImage* dst)//otsu 最大类间差分法,一种自适应阈值确定方法
{
int height = src->height;
int width = src->width;
float histogram[256] = {0};
for (int i = 0; i < height; i++)
{
unsigned char* p = (unsigned char*)src->imageData + src->widthStep*i;
for (int j = 0; j < width; j++)
{
histogram[*p++]++;
}
}
int size = height * width;
for (int i = 0; i < 256; i++)
{
histogram[i] = histogram[i] / size;
}
float avgValue = 0;
for (int i = 0; i < 256; i++)
{
avgValue += i*histogram[i];
}
int threshold;
float maxVariance = 0;
float w = 0, u = 0;
for (int i = 0; i < 256; i++)
{
w += histogram[i];
u += i*histogram[i];
float t = avgValue*w - u;
float variance = t*t / (w*(1-w));
if (variance > maxVariance)
{
maxVariance = variance;
threshold = i;
}
}
cvThreshold(src,dst,threshold,255,CV_THRESH_BINARY);
}
void cvSkinOtsu(IplImage* src,IplImage* dst)
{
assert(dst->nChannels == 1 && src->nChannels == 3);
IplImage* ycrcb = cvCreateImage(cvGetSize(src),8,3);
IplImage* cr = cvCreateImage(cvGetSize(src),8,1);
cvCvtColor(src,ycrcb,CV_BGR2YCrCb);
cvSplit(ycrcb,0,cr,0,0);
cvThresholdOtsu(cr,cr);
cvCopyImage(cr,dst);
cvReleaseImage(&cr);
cvReleaseImage(&ycrcb);
}
// 计算两点(p1,p2) 和 (p3,p4) 之间的距离
double distance(double p1,double p2,double p3,double p4)
{
double a = (p1 - p3)*(p1 - p3) + (p2 - p4)*(p2 - p4);
double b = sqrt(a);
return b;
}
//主函数
int main()
{
CvCapture* capture = cvCaptureFromCAM(0);//从对摄像头的初始化捕获
if(!cvQueryFrame(capture)) cout<<"Video capture failed, please check the camera."<<endl;
else cout<<"Video camera capture status: OK"<<endl;
CvSize sz = cvGetSize(cvQueryFrame( capture));//得到摄像头图像大小
IplImage* src = cvCreateImage( sz, 8, 3 );//3通道,每个通道8位
IplImage* dst_crotsu = cvCreateImage(sz, 8, 1);
IplImage* dst_MaxSecond = cvCreateImage(sz, 8, 1);
IplImage* dst_hand = cvCreateImage(sz, 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);//分配大小为0的内存空间
CvMemStorage* storageHand = cvCreateMemStorage(0);
CvMemStorage* dftStorage = cvCreateMemStorage(0);
CvMemStorage* minStorage = cvCreateMemStorage(0);
CvSeq* contour = 0;//用于选取最大两区域
CvSeq* sq = 0;//用于选取手
cvNamedWindow("source", CV_WINDOW_AUTOSIZE);//创建用于显示的窗口
cvNamedWindow("cvSkinOtsu", CV_WINDOW_AUTOSIZE);
cvNamedWindow("cvHandFace", CV_WINDOW_AUTOSIZE);
cvNamedWindow("Hand", CV_WINDOW_AUTOSIZE);
cvNamedWindow("bg", CV_WINDOW_AUTOSIZE);
// 以下两行是为了计算图形的重心做准备
CvMoments moments;
CvMat* region;
//定义一些点和具体的参数
CvPoint pt1,pt2,ptmax;
double m00 = 0,m10,m01,p1x,p1y,p2x,p2y,max,sum,average;
int n = 0,Nc;
// src = cvQueryFrame(capture);
// cvShowImage("source", src);
// cvSaveImage("test.img", src);
// cout<<"hejhd"<<endl;
while(1)
{
IplImage* bg = cvCreateImage( sz, 8, 3);//
cvRectangle( bg, cvPoint(0,0), cvPoint(bg->width,bg->height), CV_RGB( 255, 255, 255), -1, 8, 0 );//画矩形,参数:Image,两个顶点坐标,线的颜色,线的厚度(CV_FILLED时绘制填充了色彩的矩形),线条类型,坐标点的小数点位数
bg->origin = 0;//表示坐标系统的原点,0表示左上,1表示左下
for(int b = 0; b< int(bg->width/10); b++)//画网格
{
cvLine( bg, cvPoint(b*20, 0), cvPoint(b*20, bg->height), CV_RGB( 200, 200, 200), 1, 8, 0 );//画竖线
//cvLine(图像,线段的第一个端点,第二个端点,颜色,粗细,类型,坐标点的小数点位数)
cvLine( bg, cvPoint(0, b*20), cvPoint(bg->width, b*20), CV_RGB( 200, 200, 200), 1, 8, 0 );//画横线
}
cvShowImage("bg", bg);
src = cvQueryFrame(capture);//得到一帧图像
cvSaveImage("src.jpg", src);
cvShowImage("source", src);
// cvWaitKey(100);
cvZero(dst_crotsu);
cvSkinOtsu(src, dst_crotsu);//得到二值化图像
// cvShowImage("cvSkinOtsu", dst_crotsu);
cvSaveImage("skinOtsu.jpg", dst_crotsu);
cvThreshold(dst_crotsu, dst_crotsu, 127, 255, CV_THRESH_BINARY);
int contour_num = cvFindContours(dst_crotsu, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);//得到最大两轮廓
double maxarea = 0;//
double secondarea = 0;
double minarea = 100;
cvZero(dst_MaxSecond);
CvSeq* _contour = contour;
int m = 0;
for(;contour != 0; contour = contour->h_next)
{
m++;
double tmparea = fabs(cvContourArea(contour));
if(tmparea < minarea) {cvSeqRemove(contour, 0); continue;}//删除噪声
if(tmparea > maxarea) {secondarea = maxarea; maxarea = tmparea;}//得到最大面积
else if(tmparea > secondarea) {secondarea = tmparea;}//得到第二大面积
}
contour = _contour;
for(; contour != 0; contour = contour->h_next)//画出最大两区域
{
double tmparea = fabs(cvContourArea(contour));
if (tmparea == maxarea)
{
CvScalar color = CV_RGB(255, 255, 255);
cvDrawContours(dst_MaxSecond, contour, color, color, 0, CV_FILLED);
}
else if (tmparea == secondarea)
{
CvScalar color = CV_RGB(255, 255, 255);
cvDrawContours(dst_MaxSecond, contour, color, color, 0, CV_FILLED);
}
}
cvShowImage("cvHandFace", dst_MaxSecond);
cvSaveImage("handface.jpg", dst_MaxSecond);
// cvWaitKey(100);
//选取手区域
cvZero(dst_hand);
cvThreshold(dst_MaxSecond, dst_MaxSecond,127,255,CV_THRESH_BINARY);
Nc = cvFindContours(dst_MaxSecond, storageHand, &sq, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
for (; sq != NULL; sq = sq->h_next)
{
max = 0;
sum = 0;
average = 0;
vector<CvPoint> pt_vec;
vector<CvPoint>::iterator piter;
n++;
CvSeq* csq = cvApproxPoly(sq, sizeof(CvContour), storageHand, CV_POLY_APPROX_DP, 25, 0);// 相似多边形逼近该轮廓,以更好地求重心坐标
region = (CvMat*)csq;
// 将保存多边形的矩阵region的重心计算出来并保存在moments中
cvMoments(region,&moments,0);
m00 = moments.m00; // 总重
m10 = moments.m10; // x轴重
m01 = moments.m01; // y轴重
double inv_m00 = 1. / m00; // 总重的倒数
pt1.x = cvRound(m10 * inv_m00); // 重心的横坐标
p2x = pt1.x * 1.0; // 用p2x表示重心的横坐标
pt1.y = cvRound(m01 * inv_m00); // 重心的纵坐标
p2y = pt1.y * 1.0; // 用p2y来表示重心的纵坐标,以方便计算距离
cout << "contour #" << n << ":" << endl; // 打印当前的轮廓
// 打印当前轮廓的重心
cout << "重心: " << "(" << p2x << "," << p2y << ")" << endl;
// 打印当前轮廓包含像素点的总数
cout << "sq->total = " << sq->total << endl;
//将当前轮廓中的每一个点保存在链表 pt_vec中
for (int i = 0; i < sq->total; ++i)
{
CvPoint* p = CV_GET_SEQ_ELEM(CvPoint,sq,i);
pt_vec.push_back(*p);
}
// 将链表的迭代器指向链表中的第一个点上
piter = pt_vec.begin();
//循环进行轮廓上每一个点的操作
for (; piter < pt_vec.end();++piter)
{
pt2 = *piter; // 将当前迭代器所指向的点保存在pt2中
p1x = pt2.x * 1.0; // 获取当前点的横坐标
p1y = pt2.y * 1.0; // 获取当前点的纵坐标
double d = distance(p1x,p1y,p2x,p2y); // 求当前点到重心的距离
sum += d; // 每次将距离都加在sum,以便求总距离
//求最大距离所对应的点,把最大距离保存在max中,所对应的点 保存在 ptmax中
if (d > max)
{
max = d;
ptmax = pt2;
}
}
//求轮廓所有的点到重心的平均距离
average = sum / (sq->total * 1.0);
double ab = max / average; // ab 就是那个倍数
cout << "distanceMax = " << max << endl; // 打印最大距离
cout << "distanceAverage = " << average << endl; // 打印平均距离
cout << "ab = " << ab << endl; // 打印那个倍数
if (ab < 1.5) // 如果该倍数小于1.6,则舍弃该轮廓 改成1.5倍
{
cout << "remove #" << n << endl; // 打印删除的是哪个轮廓
cvSeqRemove(sq,0); // 删除该轮廓
continue;
}
//将保留下的轮廓填充颜色显示
CvScalar color = CV_RGB(255,255,255);
cvDrawContours(dst_hand,sq,color,color,-1,-1,8);
//在bg图上确定手的区域
CvRect rect = cvBoundingRect( sq, 0 );//返回一个2d矩形的点集合
cvRectangle( bg, cvPoint(rect.x, rect.y + rect.height), cvPoint(rect.x + rect.width, rect.y), CV_RGB(200, 0, 200), 1, 8, 0 );
cvDrawContours(bg,sq,CV_RGB(127,0,0),CV_RGB(127,0,0),-1,-1,8);
cvShowImage("bg",bg);
}
cvShowImage("Hand", dst_hand);
cvSaveImage("hand.jpg", dst_hand);
cvWaitKey(100);
}
cvReleaseCapture( &capture);
cvDestroyAllWindows();
}