AI Agent系列(8):自进化架构的动力学实现
二、自进化架构的实现机制
1. 神经达尔文选择算法
import numpy as np
class NeuralDarwinism:
def __init__(self, population_size=50):
self.population = self._initialize_population(population_size)
def _initialize_population(self, size):
# 生成随机拓扑架构编码(维度:层数×连接密度)
return [np.random.rand(8,4) * 2 - 1 for _ in range(size)]
def synaptic_selection(self, fitness_scores):
"""基于适应度的突触权重自然选择"""
probabilities = np.exp(fitness_scores) / np.sum(np.exp(fitness_scores))
selected_idx = np.random.choice(len(self.population), p=probabilities)
return self.population[selected_idx]
def cognitive_mutation(self, genome, mutation_rate=0.15):
"""受量子隧穿启发的认知变异算子"""
mask = np.random.binomial(1, mutation_rate, size=genome.shape)
return genome + mask * (np.random.randn(*genome.shape) * 0.2)
class HyperdimensionalRecombiner:
def __init__(self, embedding_dim=512):
self.rotation_matrix = np.random.randn(embedding_dim, embedding_dim)
def conceptual_crossover(self, parentA, parentB):
"""在超球面上进行维度纠缠重组"""
hybrid = (parentA + 1j*parentB) @ self.rotation_matrix
return np.real(hybrid), np.imag(hybrid)
2. 拓扑基因编码策略
认知基因组代数表达式
令认知函数

最低0.47元/天 解锁文章
150

被折叠的 条评论
为什么被折叠?



