智能优化算法之灰狼优化算法(GWO)

图片

智能优化算法是一类基于自然界中生物、物理或社会现象的优化技术。这些算法通过模拟自然界中的一些智能行为,如遗传学、蚁群觅食、粒子群体运动等,来解决复杂的优化问题。智能优化算法广泛应用于各种工程和科学领域,因其具有全局搜索能力、鲁棒性强以及易于实现等优点。

灰狼优化算法(GWO)

图片

灰狼优化算法(Grey Wolf Optimizer, GWO)是一种新兴的智能优化算法,灵感来源于灰狼的捕猎行为。该算法由Seyedali Mirjalili等人在2014年提出,模拟了灰狼的社会层次结构和合作狩猎的策略。

GWO算法自2014年提出以来,受到了广泛关注和研究。它不仅在学术界被广泛研究和引用,而且在工程优化、机器学习、图像处理等多个领域得到了成功应用。GWO最初只是作者在研究其他优化算法时的灵感,但最终却发展成为一个独立且强大的优化工具。

灰狼被认为是顶级捕食者,位于食物链的顶端。灰狼喜欢群居,每群平均有5至12只灰狼。如附图所示,群体中的所有个体都具有非常严格的社会支配等级。

图片

图2 灰狼的社会等级*

Alpha (α) 狼被视为狼群中的主导狼,狼群成员必须服从它的命令。
Beta (β) 是从属狼,帮助 Alpha 做出决策,被视为成为 Alpha 的最佳候选人。
Delta(δ)狼必须服从 Alpha 和 Beta,但它们主宰 Omega。δ 狼有不同的类别,如侦察兵、哨兵、长老、猎人、看守者等。
Omega (ω) 狼被视为狼群中的替罪羊,是狼群中最不重要的个体,只能在最后才被允许进食。

灰狼狩猎的主要阶段:
  1. 追踪、追逐并接近猎物。

  2. 追逐、包围、骚扰猎物,直到其停止移动。

  3. 向猎物发起攻击。

通过数学建模来设计灰狼的社会等级和狩猎行为,以设计 GWO。

数学模型与算法
社会等级
  • 最适合的解决方案是Alpha狼(α)

  • 第二最佳解决方案是 Beta 狼(β)

  • 第三最佳解决方案是 Delta 狼(δ)

  • 其余候选解决方案为 Omega 狼(ω)

数学模型

灰狼优化算法的数学模型描述了某个目标函的优化方法(寻找最优值,即猎物)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值