点云预处理是处理点云数据时的重要部分,其目的是提高点云数据的质量和处理效率。通过去除离群点、减少点云密度和增强特征,可以消除噪声、减少计算量、提高算法的准确性和鲁棒性,从而为后续的点云处理和分析步骤(如配准、分割和重建)提供更高质量的数据基础。
以下是常用的点云预处理算法介绍,内容包括离群点过滤、点云下采样、坐标上采样和特征上采样的数学原理以及Open3D实现代码。
离群点过滤
无效值剔除
无效值剔除是指移除点云中的值或无穷大的值。
数学原理: 假设点云数据集为,其中每个点。无效值剔除的规则可以表示为:
Open3D实现:
import open3d as o3d
def remove_invalid_points(pcd):
pcd = pcd.select_by_index(
np.where(np.isfinite(np.asarray(pcd.points)).all(axis=1))[0]
)
return pcd
# 示例
pcd = o3d.io.read_point_cloud("example.ply")
pcd = remove_invalid_points(pcd)
o3d.visualization.draw_geometries([pcd])
统计方法剔除
统计方法剔除利用每个点的邻域统计信息来识别并移除离群点。
数学原理: 计算每个点到其个最近邻点的平均距离,并将该点的平均距离与全局平均距离进行比较。如果某点的平均距离超出某一阈值,则认为该点为离群点。
Open3D实现:
def statistical_outlier_removal(pcd, nb_neighbors=20, std_ratio=2.0):
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=nb_neighbors, std_ratio=std_ratio)
pcd = pcd.select_by_index(ind)
return pcd
# 示例
pcd = o3d.io.read_point_cloud("example.ply")
pcd = statistical_outlier_removal(pcd)
o3d.visualization.draw_geometries([pcd])
半径滤波方法剔除
半径滤波方法根据每个点在指定半径内的邻居数量来剔除离群点。
数学原理: 设定一个半径和最小点数阈值。对于每个点,如果其在半径内的邻居数量少于,则认为该点为离群点。
Open3D实现:
def radius_outlier_removal(pcd, radius=0.05, min_points=5):
cl, ind = pcd.remove_radius_outlier(nb_points=min_points, radius=radius)
pcd = pcd.select_by_index(ind)
return pcd
# 示例
pcd = o3d.io.read_point_cloud("example.ply")
pcd = radius_outlier_removal(pcd)
o3d.visualization.draw_geometries([pcd])
离群点剔除代码示例:
import open3d as o3d
from copy import deepcopy
import numpy as np
if __name__ == '__main__':
file_path = 'rabbit.pcd'
pcd = o3d.io.read_point_cloud(file_path)
pcd = pcd.uniform_down_sample(50)#每50个点采样一次
pcd.paint_uniform_color([0.5, 0.5, 0.5])#指定显示为灰色
print(pcd)
#剔除无效值
pcd1 = deepcopy(pcd)
pcd1.paint_uniform_color([0, 0, 1])#指定显示为蓝色
pcd1.translate((20, 0, 0)) #整体进行x轴方向平移
pcd1 = pcd1.remove