所谓RAG(Retrieval - Augmented Generation),即信息检索(Retrieval)+内容生成(Generation)。
通过 RAG,可以让大模型从指定的内部知识库“检索”准确的内容,再根据准确的内容“生成”回答内容,从而有效避免幻觉。
比如,如果直接让大模型进行医疗诊断,由于大模型的本质是概率模型,因此它会提供大量错误或者不相关的信息。
有了RAG,大模型就可以从海量的医学文献、病例库中直接检索与患者病症相关的知识,再生成诊断建议供医生参考,从而提高内容的准确性。
接下来给大家介绍 RAG 的 7 个核心概念,看完以后,你会对 RAG 有更深入的认识。
1、向量数据库
向量数据库是 RAG 最重要的基础设施之一。
传统数据库的内容查询主要依赖“关键词匹配”,对查询的精确度要求很高。
比如,如果你查询“如何提高工作效率”,而数据库只有“时间管理技巧”内容,那么就无法搜索出任何内容。
而向量数据库就可以有效解决这个问题,它会把各种知识都转换成一组组数字(向量),这些数字能代表知识的内容和特点,
当你在 RAG 系统中输入查找信息时,它会把输入信息也转换成一组数字(向量),然后在数据库中找出最相关的知识,从而实现“语义检索”。
比如,下面的每个知识都转化为了一个 3 维向量(实际应用中可能把一个知识转化为几十甚至几千维的向量):
时间管理:[0.12,0.23,0.46]
工作地点:[0.92,0.82,0.65]
考勤制度:[0.83,0.93,0.78]
当用户查询“工作效率”,向量数据库就可以把“工作效率”转化为向量: [0.12,0.23,0.53]。
显然它和“时间管理”的向量 [0.12,0.23,0.46] 相似度很高——从业务上来说,是因为“时间管理”是提高“工作效率”的一种有效方法,这就导致两者的语义高度相关。
其实,这就是“语义检索”的过程。
在传统客服系统中,由于依赖“关键词匹配”,在面对复杂咨询时,就很难给出用户想要的答案。
而 AI 客服使用向量数据库,当用户咨询时,可以通过 “语义检索”快速找到最相关的答案,从而提升用户体验和满意度。
2、混合检索
基于向量知识库的语义检索虽然很好,但是也存在 2 个问题:
首先是面对超大数据量,语义检索的速度不如传统的关键词检索。
其次是对于一些需要精确匹配的场景,关键词匹配更有优势。比如在法律文件检索中,法律条文、案例等对措辞的精准要求就很高。
因此,在很多场景下,RAG 会同时使用关键词检索和语义检索,从而尽可能的提升检索体验。
比如,在电商平台上,用户搜索“无线蓝牙耳机”。纯语义检索可能会推荐一些带有“无线”或“蓝牙”字样的普通耳机,但混合检索除了语义匹配,还会根据关键词“无线蓝牙”进行精确匹配,确保优先推荐符合“无线蓝牙耳机”这一完整要求的产品。
3、分块、嵌入与索引
RAG在存储知识时,为了更高效地管理和检索,通常会将原始文档按照一定的规则(如固定长度、语义单元等)分块。
就如同一本很长的小说,如果把它切成一个个章节或者更小的段落块,那么在查找某个故事情节时就更方便快捷。
分块以后,还需要把每一个块转化为向量,从而存储到向量数据库,这就是嵌入。
嵌入以后,还可以把向量存储到一个高效的检索结构中,以便快速进行相似性计算和检索,这就是索引。
比如,某法律咨询平台为用户提供在线法律咨询服务。
由于法律领域的知识库通常非常庞大且复杂,包含大量的文本信息,如法律条文、司法解释、案例判决书等。
在构建知识库时,就可以将法律条文、案例等长文本分割成多个小块,同时,利用索引结构记录每个小块的向量位置,以便快速检索。
这样,当用户输入法律问题,如“合同违约的赔偿标准是什么”,RAG 就可以从数据库中快速找到最相关的多个小块,并通过上下文融合来生成更为准确和完整的答案。
4、重排序(re-rank)
当 RAG 从数据库中检索出多个内容时,需要选取相关性最大的内容喂给大模型,从而提高大模型的回答质量。
所谓重排序,是指 RAG 将初步检索出来的内容进行重新排序,其目的是将最相关的信息排在前面,从而选取出相对更为准确的内容。
打个比方,你想让 AI 搜索一批书籍,RAG 会先大致找出一批可能你想要的书籍,然后仔细评估每一本书和你需求的契合程度,把最符合你心意的书排在最前面,方便你优先查看。
重排序的应用非常广泛,比如电商平台根据用户需求初步筛选出一批商品后,就会通过“重排序”,根据用户的实时行为、偏好历史等,对推荐商品进行重新排序,把更符合用户当下需求的商品排在前面,提高推荐的准确性和实用性。
5、上下文融合
上下文融合是指 RAG 将从多个来源检索到的知识进行整合,以便为大模型提供更全面、连贯的输入内容,这样大模型的回答才能条理清晰、内容完整。
比如,在智能客服场景中,用户咨询:“我刚收到的商品有点瑕疵,我可以申请退货吗?”
要回答好这个问题,RAG 就需要从多个来源检索信息,比如用户的订单信息、退货政策等,再把这些内容整理成统一的内容,以便大模型能够基于内容生成高质量的回答。
6、准确率和召回率
准确率(Precision)是指在 RAG 检索到的内容中,与用户问题真正相关的内容的比例。
例如,在一个问答系统中,检索到 10 条知识,其中有 8 条与用户问题高度相关,那么准确率就是 80%。
准确率是衡量检索质量最重要的指标之一。
比如,智能客服在回答用户问题时,如果准确率不高,就会提供大量不相关或错误的答案,影响用户体验。
但是,只有高的准确率还不够,还必须有高的召回率。
所谓召回率(Recall),是指与用户问题相关的所有知识中,被成功检索到的比例。
例如,知识库中有 20 条与用户问题相关的知识,检索到 12 条,那么召回率就是 60%。
在实际应用场景中,召回率和准确率往往会成为跷跷板。比如如果过度追求高召回率,可能会导致检索结果中包含大量不相关的信息,影响准确率。反之亦然。
比如,在一个电商商品检索系统中,为了尽可能多地召回相关商品,降低了检索阈值,结果导致很多边缘相关甚至不相关的商品也出现在结果中。
在这种情况下,我们可以引入 F1 值进行综合评估,从而找到召回率和准确率之间的平衡点。
F1 值的计算公式是:F1= 2*(精确率*召回率)/(精确率+召回率)。
在这个公式中,当准确率或者召回率中的任何一个非常低时,F1 值也会相应的降低。
7、知识图谱
知识图谱就像是一个巨大的知识网络,把各种知识当作一个个节点,并且把有关系的节点进行连接。
比如,通过知识图谱可以对菜谱知识进行管理,把各个菜谱、原材料、烹饪方法连接起来,这样,当用户询问“用鸡蛋可以做哪些菜”时,RAG 就可以通过“菜谱-原材料”的连接关系,准确找到使用“鸡蛋”的菜谱。
通过知识图谱,RAG 能够捕捉到实体间的复杂关系,还能够基于已有的实体关系进行推理和扩展,发现更多潜在的相关信息,从而大大提升准确率和召回率。
比如,一年级有 5 个班,RAG 数据库中记录了 5 个班各自的期末成绩,但是并没有存储“一年级所有同学的平均成绩”。
这就导致,当用户询问“一年级期末平均成绩是多少”时,RAG 找不到相关内容,最后给出一个错误的答案。
但是,如果我们通过知识图谱建立了“一年级”和“5 个班级”之间的实体关系,RAG 就能根据根据这个关系找到“5 个班级的期末成绩”,再通过计算给到用户一个准确的回答。
最后,一个 RAG 系统的运行可能包含以下步骤:
1、向量数据库提供知识存储的基础设施
2、对内容进行分块、嵌入和索引,以方便检索
3、再通过知识图谱建立相关实体的关系,从而提高检索和生成的准确度
4、当用户查询时,通过混合检索、知识图谱等方式检索内容
5、然后把检索出来的内容进行重排序,选出最相关的内容
6、把选出的内容进行上下文融合,提供给大模型生成回答内容
7、最后,通过 F1 值对 RAG 系统的准确率和召回率进行综合评估
8、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方优快云官方认证二维码
,免费领取【保证100%免费
】