从理论到实践:深入拆解Agent的四大核心组件(LLM+Tools+Memory+Plan),收藏这份大模型落地指南

接下来,我会拆解一下 Agent 的组成结构:包括它是怎么规划任务的、怎么调用工具执行、又是如何记住上下文和偏好的。这不仅是理解 Agent 的方式,也是一种全新的产品设计范式。

首先,我们可以把 Agent 想成是一个终于长出了“手脚”和“记忆”的大模型,是一个能完成复杂任务、能打配合、还能持续优化执行路径的“数字助理”。

它的基本组成有 4 个关键部件:大模型( LLM )、工具使用(Tools)、记忆(Memory)、规划能力(Plan)。

在这里插入图片描述

LLM:Agent 的“大脑”

在聊 Agent 是怎么动手干活之前,我们得先搞清楚一个问题:Agent 到底是怎么“理解人话”的?

答案就是——它的“大脑”是 LLM(大语言模型)

LLM 是什么?

LLM,全称是 Large Language Model(大语言模型),简单来说,它是一个在海量文本上训练出来的“预测机器”——你输入一句话,它预测你可能想听什么,输出相应的内容。

那它是怎么预测的呢? 本质上,LLM 是基于上下文预测下一个词的概率模型。它不会“理解”你说了什么(它没有真正的意识),但它非常擅长从大量语言数据中学习出哪些词是“最可能”出现在当前语境后面的。

举个简单的例子:

假设你对 LLM 说了一句话开头:

“我今天早上喝了一杯……”

它会从它学过的海量数据中判断,这个位置最有可能出现的词是什么?

“咖啡” → 可能性 42%“奶茶” → 可能性 27%“白开水” → 可能性 12%“酒” → 可能性 3%“电视” → 可能性 0.01%(不合常理)

于是,模型就选了概率最高的词 —— “咖啡”。

下一步,它再接着预测下一个词,比如:

“我今天早上喝了一杯咖啡,然后……”

“去” → 32%“就” → 25%“感觉” → 20%“跑” → 10%

就这样一个词一个词地接下去,每一步都在预测“最有可能”出现的词。这也解释了 LLM 的一个典型特性:它不是“在思考”,而是根据概率生成最合理的内容。

那LLM和 Agent 有什么不同?

虽然 LLM 听起来就已经很厉害,但它其实像是一个**天赋极高但不具备行动能力的智者(类似于《权力的游戏》中布兰·史塔克),**你让它分析,它能讲得头头是道;但让它去干活,比如查实时票价、登录网站、下订单……它就祭了。

一句话总结它们的区别:

为什么我们需要 Agent?

在真实世界中,我们做的事情往往是「多步骤+跨工具+有明确目标」的,比如:

想写一篇竞品分析报告 → 需要查询多个网站 → 提炼关键信息 → 写文章/写PPT

想订一张机票 → 需要查航班 → 比价 → 下单 → 记录日程

如果 AI 只会告诉你怎么做,而不能替你去做,等于你还是得一个个页面点,一个个 app 切换,根本没有省下多少精力。

而 Agent 就是为了实现“从知道怎么做 → 真的帮你做”而诞生的。它以 LLM 为“核心”,再配上工具调用、任务规划、上下文记忆能力,最终进化成的一个可以自主完成任务的数字助理。

Tools:Agent 的“手脚”

如果说 LLM 是 Agent 的“大脑”,那 Tools 就是它的“手脚”——真正能下场干活的部分。

为什么需要工具?

LLM 虽然能回答很多问题,但它本质上是个封闭系统。它的知识截止于训练时间,不能联网、不能读网页、不能主动获取最新的数据。你问它“明天北京天气怎么样”,它只能说“我无法访问实时信息”。

但换个方式:让它调用一个天气 API,它就能给你答得头头是道。

工具是补上 LLM 无法“感知现实世界”的那一块短板,让它不止能说,还能查、能干、能动。

常见的 Agent 工具类型有哪些?

典型工具调用案例:

GPT + Bing 浏览器插件:用户问“最新的iPhone15什么时候发布”,模型就能自动调用 Bing 搜索 API 来实时抓网页、读内容、生成摘要,信息比默认 LLM 更新、更准确。

携程问道:当用户说“帮我找一张下周去广州的便宜机票”,它会调用航旅票务系统获取实时航班信息->查询用户评价、机型舒适度->返回结构化选项卡(含票价、时间、直飞/中转等标签)。

Memory:Agent 的“记忆”

当用户告诉 AI 要去成都玩 3 天、预算 2000、喜欢住民宿、不吃辣,它会立马埋头开始规划,但下一轮用户补充一句“酒店预算可以放宽点”,它若回复:“您要订哪里的酒店?”用户会不会很崩溃?

这正是没有“记忆能力”的 Agent 经常暴露出的尴尬瞬间。

因此真正能完成完整任务的 Agent,往往都拥有一定程度的记忆能力,而这份“记性”,是它能否从“工具”升级为“助理”的关键。

Agent 记忆可以分为三类:

  1. 短期记忆

定义:短期记忆主要通过上下文学习实现,上下文学习指的是利用Prompt中包含的相关信息来改善生成结果的能力。

局限性:上下文窗口的长度限制了LLM可以有效利用的短期记忆容量。当输入Prompt过长时,LLM可能会出现“中间丢失”的现象,即模型难以有效地利用Prompt中间部分的信息。

案例:用户说“我想订去成都的票”,“下午也可以”→ LLM需要通过短期记忆知道“下午”指的是“飞成都的航班”。

  1. 长期记忆

定义:长期记忆使AI Agent能够跨多次交互存储和检索信息,提供持续性和个性化体验。虽然无法在每次对话中将用户的所有历史会话都纳入Prompt,但可以通过特定的存储机制保留关键信息,并在需要时检索以补充上下文。

存储内容:关键事实,如用户的职业、兴趣或重要事件;用户偏好,如喜欢简洁回答或偏好某种语言风格;历史决策,如用户过去的选项选择或行为模式。

案例:讯飞晓医会自动记录用户的年龄、性别、慢性病史,用户下一次打开时,只需说“我最近又咳嗽了”,它就能结合既往记录推荐就诊科室或用药建议。

3.记忆反思

定义:指Agent分析其存储的记忆,从中提取经验教训或模式,以优化未来的行为和决策,这一过程类似于人类通过回顾过去来改进当下的能力。

Agent的“反思”方式:从交互中学习,通过分析历史记录,识别重复出现的模式或错误,并调整策略;个性化响应,利用长期记忆中的用户偏好,Agent能为每个用户量身定制回答;优化决策,通过反思历史决策,Agent能在相似场景下做出更优选择;知识积累,随着时间推移,Agent构建并完善知识库,提供更准确、更有深度的回答。

通过记忆反思,Agent从静态的响应工具转变为动态的学习者,这种能力不仅提升了回答的质量和效率,还使Agent更具适应性,能够应对复杂的用户需求和变化的场景。

Plan:Agent 的“规划能力”

真正能解决任务的 Agent,一定拥有 Plan,也就是“规划”的能力。这份能力,才是它从“语言模型”迈向“任务执行器”的核心跨越。

什么是 Plan?

Plan,说白了就是让 Agent 具备拆任务、排顺序、定策略、协调执行的能力。不是“你问我答”,而是“你交代任务,我安排流程”。

这件事的难点不在“调用工具”,而在于:在合适的时机,用对的工具,干对的事。

Plan 的三大关键能力:

  1. 理解任务目标

Agent 不只是听懂语义,还要明确用户到底要解决什么。 用户说“我想去成都玩三天”,它要理解你不是“想了解成都”,而是“希望获得一份可落地的三日行程安排”。

  1. 拆分子任务

一个目标往往需要多个步骤配合完成:订机票->找酒店->安排行程(分三天)->推荐美食和交通。每一步都依赖上一步的结果。

  1. 排定执行顺序并动态调整

Agent 需要知道什么任务必须先做(如订机票定时间),什么可以后做(如安排餐馆),还要根据用户反馈随时调整计划。比如:用户突然说“我不想住民宿了”,它就要重新筛选酒店、更新交通方案,而不是“重来一次”。

现实中 Agent 是如何规划的?

当前主流的 Plan 实现方式有四种:

  1. 按提示词进行规划

靠设计 prompt引导大模型“自己”拆解任务,好处是轻量、快上手,缺点是稳定性差、难跟踪,例如让 ChatGPT 写一份面试准备清单,它靠 prompt 自动列出流程,但中途改需求就崩。

  1. 按规则进行规划

通过 if-else 或流程图硬编码规则,适合流程固定、变化少的场景,例如企业对话机器人。

  1. 用代码规划进行规划

用代码构建任务图或执行链,每一步都显式定义,逻辑可控、可追踪,例如LangChain 的 AgentExecutor、AutoGPT 的多步指令系统。

  1. LLM + Planner 模块

LLM 负责意图理解和任务拆解,Planner 模块协调任务流、调用工具、管理状态,这是当前最灵活、最强大的方案,例如Manus就是用这种方式。

以飞猪 Agent 为例:用户说:“我想从北京去成都玩 3 天。”

LLM 理解意图:出行需求 + 时间 + 地点Planner 拆解任务:查航班 → 筛酒店 → 生成行程 → 输出总结卡片Tool 调用:航旅 API、价格比价、地图服务、用户偏好筛选Memory 记忆:用户预算、是否携带老人、对餐饮的偏好Plan 全程串联:每一步都按依赖顺序执行,中间结果还能被动态更新

最后用户收到的是:已查航班->推荐酒店卡片->导出日程->推荐用户偏好的餐馆

在这里插入图片描述

最后

我曾经以为 AI 只是个更聪明的工具,现在慢慢发现,它已经逐渐变成了“能干活的搭子”。但也别高估现状——现在市面上大多数 Agent,不管名字起得多响,很多其实还停留在“半搭子”状态:

  • 有的会拆任务,但不会调合适的工具;
  • 有的记住了用户过多偏好,导致用户对话始终在自己的“记忆”中打圈圈;
  • 有的做完了第一步,却走错了下一步,想修改却在错误的道路越走越远。

所以,Agent 的真正价值,是它能否像一个“产品经理+研发”——不仅能准确理解用户的需求,还能将大目标拆解成可执行的小任务,并能在复杂路径中灵活调整,最终把事办成。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值