Multimodal Memory Modelling for Video Captioning

提出一种多模态记忆模型,用于视频到自然语言句子的自动转换。该模型通过外部记忆存储和检索视觉及文本内容,实现长程视觉文本依赖建模,并指导全局视觉注意力。实验表明,该方法在MSVD和MSR-VTT数据集上取得优异效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multimodal Memory Modelling for Video Captioning

Video captioning which automatically translates video clips into natural language sentences is a very important task in computer vision. By virtue of recent deep learning technologies, e.g., convolutional neural networks (CNNs) and recurrent neural networks (RNNs), video captioning has made great progress. However, learning an effective mapping from visual sequence space to language space is still a challenging problem. In this paper, we propose a Multimodal Memory Model (M3) to describe videos, which builds a visual and textual shared memory to model the long-term visual-textual dependency and further guide global visual attention on described targets. Specifically, the proposed M3 attaches an external memory to store and retrieve both visual and textual contents by interacting with video and sentence with multiple read and write operations. First, text representation in the Long Short-Term Memory (LSTM) based text decoder is written into the memory, and the memory contents will be read out to guide an attention to select related visual targets. Then, the selected visual information is written into the memory, which will be further read out to the text decoder. To evaluate the proposed model, we perform experiments on two publicly benchmark datasets: MSVD and MSR-VTT. The experimental results demonstrate that our method outperforms the state-of-theart methods in terms of BLEU and METEOR.
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:1611.05592 [cs.CV]
  (or arXiv:1611.05592v1 [cs.CV] for this version)

Submission history

From: Junbo Wang [ view email
[v1] Thu, 17 Nov 2016 07:24:03 GMT (773kb,D)
### 多模态Vlog数据集在机器学习中的应用 为了实现抑郁症检测,多模态Vlog数据集是一种重要的资源。这类数据集通常结合视频、音频和文本等多种模式的信息来捕捉用户的抑郁特征[^1]。具体来说,在神经网络翻译领域中提到的对比学习方法可以被扩展到多模态数据分析上,从而提升模型对于情绪状态的理解能力。 此外,针对多模态摘要生成的研究表明,通过构建分层跨模态语义相关学习模型能够有效提取不同媒体形式之间的深层次联系[^2]。这种方法同样适用于分析Vlog内容中的情感线索,帮助识别潜在的心理健康问题。 关于实际使用的数据划分策略方面,有研究指出可按照一定比例分配样本至训练集、验证集以及测试集中,并考虑加入额外属性比如性别作为辅助变量来进行更细致化的建模尝试[^3]。 以下是Python代码片段展示如何加载并初步处理此类数据: ```python import pandas as pd # 假设CSV文件包含了vlog的相关信息 data = pd.read_csv('multimodal_vlogs.csv') # 查看前几行数据结构 print(data.head()) # 数据分割示例 (假设已知标签列名为'label') from sklearn.model_selection import train_test_split train_data, temp_data, train_labels, temp_labels = train_test_split( data.drop(columns=['label']), data['label'], test_size=0.3, random_state=42) val_data, test_data, val_labels, test_labels = train_test_split( temp_data, temp_labels, test_size=(2/3), random_state=42) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值