MIXER as Reinforcement Learning

本文介绍了一种基于生成模型的序列预测方法,该方法将模型视为一个与外部环境交互的智能体,通过不断选择行动(预测下一个词)并更新其内部状态来完成序列生成任务。在每个时间步,智能体根据输入的单词和上下文向量采取行动,并在序列结束时获得奖励。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Our generative model can be viewed as an agent, which interacts with the external environment (the words and the context vector it sees as input at every time step).

2. The parameters of this agent defines a policy, whose execution results in the agent picking an action. 

3. In the sequence generation setting, an action refers to predicting the next word in the sequence at each time step.

4. After taking an action the agent updates its internal state (the hidden units of RNN).

5. Once the agent has reached the end of sequence, it observes a reward.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值