题目链接:http://poj.org/problem?id=1811
题目大意:给定一个大整数(2^54内),判断是否为素数:若为素数,输出primes;否则找出该数的最小质因子。
分析:大整数的素数测试用Miller_Rabin测试,分解时可用Pollard-rho大整数分解,然后找出最小的因子即可。
实现代码如下:
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <stdio.h>
const int Times = 10;
const int N = 5500;
using namespace std;
typedef long long LL;
LL ct, cnt;
LL fac[N], num[N];
LL gcd(LL a, LL b)
{
return b? gcd(b, a % b) : a;
}
LL multi(LL a, LL b, LL m)
{
LL ans = 0;
a %= m;
while(b)
{
if(b & 1)
{
ans = (ans + a) % m;
b--;
}
b >>= 1;
a = (a + a) % m;
}
return ans;
}
LL quick_mod(LL a, LL b, LL m)
{
LL ans = 1;
a %= m;
while(b)
{
if(b & 1)
{
ans = multi(ans, a, m);
b--;
}
b >>= 1;
a = multi(a, a, m);
}
return ans;
}
bool Miller_Rabin(LL n)
{
if(n == 2) return true;
if(n < 2 || !(n & 1)) return false;
LL m = n - 1;
int k = 0;
while((m & 1) == 0)
{
k++;
m >>= 1;
}
for(int i=0; i<Times; i++)
{
LL a = rand() % (n - 1) + 1;
LL x = quick_mod(a, m, n);
LL y = 0;
for(int j=0; j<k; j++)
{
y = multi(x, x, n);
if(y == 1 && x != 1 && x != n - 1) return false;
x = y;
}
if(y != 1) return false;
}
return true;
}
LL pollard_rho(LL n, LL c)
{
LL i = 1, k = 2;
LL x = rand() % (n - 1) + 1;
LL y = x;
while(true)
{
i++;
x = (multi(x, x, n) + c) % n;
LL d = gcd((y - x + n) % n, n);
if(1 < d && d < n) return d;
if(y == x) return n;
if(i == k)
{
y = x;
k <<= 1;
}
}
}
void find(LL n, int c)
{
if(n == 1) return;
if(Miller_Rabin(n))
{
fac[ct++] = n;
return ;
}
LL p = n;
LL k = c;
while(p >= n) p = pollard_rho(p, c--);
find(p, k);
find(n / p, k);
}
int main()
{
int t;
cin>>t;
LL n;
while(t--)
{
cin>>n;
if(Miller_Rabin(n))
{
puts("Prime");
continue;
}
ct = 0;
find(n, 120);
sort(fac, fac + ct);
num[0] = 1;
int k = 1;
for(int i=1; i<ct; i++)
{
if(fac[i] == fac[i-1])
++num[k-1];
else
{
num[k] = 1;
fac[k++] = fac[i];
}
}
cnt = k;
printf("%lld\n",fac[0]);
}
return 0;
}