tf.nn.conv2d()

tf.nn.conv2d()

函数原型:

tf.nn.conv2d(input,filter,strides,padding,use_cudnn_on_gpu=True,    data_format='NHWC', dilations=[1, 1, 1, 1],name=None)

参数:

  • input:张量tensor,每个元素的格式必须float32或者float64。input的形状:[batch,in_heigth,in_width,in_channels]。
  • batch:为训练过程中每迭代一次的样本数量(在我看到的教程中设置的值为-1,这个需要进一步了解)
  • in_height,in_width:分别为样本的高和宽度。
  • in_channels:为图片的通道数,如黑白色图片的通道数为1,通常彩色图片的通道数为3。
  • filter:一个tensor,元素的类型与input中元素的类型是一样的。 filter:的形状:[filter_height,filter_width,in_chanells,out_channels]。
  • stride:长度为4的list,元素类型为int。表示每一个维度滑动的步长
  • padding: 选择填充的方式,有两种方式VALID;SAME。”SAME”表示采用填充的方式,最终输入跟输出数据的大小是一样;”VALID”表示采用不填充的方式,即输出大小跟输入大小不一样
tf.nn.conv2d is a function in TensorFlow that performs a 2D convolution operation on a given input tensor and a set of filters. It is typically used in deep learning models for image processing and computer vision tasks. The function takes several arguments, including the input tensor, the filter tensor, the strides for the convolution operation, and the padding scheme. The output of the convolution operation is a new tensor that represents the result of applying the filters to the input tensor. Here is an example usage of tf.nn.conv2d: ``` import tensorflow as tf # Define input and filter tensors input_tensor = tf.placeholder(tf.float32, shape=[None, 28, 28, 3]) filter_tensor = tf.Variable(tf.random_normal([5, 5, 3, 32])) # Perform a 2D convolution operation with strides of 1 and padding of 'SAME' conv = tf.nn.conv2d(input_tensor, filter_tensor, strides=[1, 1, 1, 1], padding='SAME') # Run the convolution operation within a TensorFlow session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Define a sample input tensor input_data = np.random.rand(1, 28, 28, 3) # Run the convolution operation on the input tensor conv_result = sess.run(conv, feed_dict={input_tensor: input_data}) ``` In this example, we define an input tensor with a shape of (None, 28, 28, 3), which represents a batch of 28x28 RGB images. We also define a filter tensor with a shape of (5, 5, 3, 32), which represents 32 5x5 filters that will be applied to the input tensor. We then call tf.nn.conv2d with the input and filter tensors, specifying a stride of 1 and a padding scheme of 'SAME'. This means that the output tensor will have the same spatial dimensions as the input tensor, and that the edges of the input tensor will be zero-padded to ensure that the filters can be applied to all pixels. Finally, we run the convolution operation within a TensorFlow session, providing a sample input tensor to test the operation. The resulting conv_result tensor will have a shape of (1, 28, 28, 32), representing a batch of 28x28 feature maps for each of the 32 filters applied to the input tensor.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值