【李宏毅机器学习笔记】 23、循环神经网络(Recurrent Neural Network,RNN)

【李宏毅机器学习笔记】1、回归问题(Regression)

【李宏毅机器学习笔记】2、error产生自哪里?

【李宏毅机器学习笔记】3、gradient descent

【李宏毅机器学习笔记】4、Classification

【李宏毅机器学习笔记】5、Logistic Regression

【李宏毅机器学习笔记】6、简短介绍Deep Learning

【李宏毅机器学习笔记】7、反向传播(Backpropagation)

【李宏毅机器学习笔记】8、Tips for Training DNN

【李宏毅机器学习笔记】9、Convolutional Neural Network(CNN)

【李宏毅机器学习笔记】10、Why deep?(待填坑)

【李宏毅机器学习笔记】11、 Semi-supervised

【李宏毅机器学习笔记】 12、Unsupervised Learning - Linear Methods

【李宏毅机器学习笔记】 13、Unsupervised Learning - Word Embedding(待填坑)

【李宏毅机器学习笔记】 14、Unsupervised Learning - Neighbor Embedding(待填坑)

【李宏毅机器学习笔记】 15、Unsupervised Learning - Auto-encoder(待填坑)

【李宏毅机器学习笔记】 16、Unsupervised Learning - Deep Generative Model(待填坑)

【李宏毅机器学习笔记】 17、迁移学习(Transfer Learning)

【李宏毅机器学习笔记】 18、支持向量机(Support Vector Machine,SVM)

【李宏毅机器学习笔记】 19、Structured Learning - Introduction(待填坑)

【李宏毅机器学习笔记】 20、Structured Learning - Linear Model(待填坑)

【李宏毅机器学习笔记】 21、Structured Learning - Structured SVM(待填坑)

【李宏毅机器学习笔记】 22、Structured Learning - Sequence Labeling(待填坑)

【李宏毅机器学习笔记】 23、循环神经网络(Recurrent Neural Network,RNN)

【李宏毅机器学习笔记】 24、集成学习(Ensemble)

------------------------------------------------------------------------------------------------------

【李宏毅深度强化学习】视频地址:https://www.bilibili.com/video/av10590361?p=36

课件地址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html

-------------------------------------------------------------------------------------------------------

Example Application

先以一个智能机器人的例子开始。

理解一段文字的一种方法是标记那些对句子有意义的单词或记号。在自然语言处理领域,这个问题被称为槽填充(Slot Filling)。

所以此时机器人要找出input句子的有用的信息(destination,time of arrival),然后输出要回答的答案。

 这件事情可以先尝试用一个普通的network做一下,看看会遇到什么问题。

把词语转成vector作为input,其它步骤和普通的network一样。

但,怎么把词语转成vector呢?如下。

1-of-N encoding

这个方法很简单,将物品在对应的列上置1 。 

缺点:如果出现lexicon没有记录的物品,没办法在所属的列上置1 。

所以,可以用以下方法改进。

Beyond 1-of-N encoding

  • Dimension for “Other” : 把没记录过的物品归到 other 类里。
  • Word hashing : 用词汇的字母的n-gram来表示这个vector 。

刚才讲了几种把word转成vector的方法,现在能进行输入以后,就能获得输出。

这个输出是一个分布,这个分布是输入的词汇(比如Taipei)属于哪个slot(destination,time of arrival)的几率。 

这样做看起来好像很合理,但其实是有问题的,如下。

如果network的input是一样的,那output应该也是一样的,但现在面临个问题:

 现在有两个句子:

  • 11月2号到达台北(台北是目的地)
  • 11月2号离开台北(台北是出发地)

对于刚才的network来说,input只有台北,它要么就一直认定台北是目的地,要么就一直认定台北市出发地。

所以,我们就希望这个network是有记忆力的,能记住联系台北之前的词汇,来判断台北市目的地还是出发地。

这种有记忆力的network就是循环神经网络(Recurrent Neural Network,RNN)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值