在多变量时间序列预测领域,如何高效捕捉时间分布变化和通道间复杂关系是两大核心挑战。传统方法往往难以同时处理时间模式的异质性和通道间的噪声影响。近期,基于时频结合的方法在这一领域取得了显著进展。本文总结了两篇创新性论文,分别从时间-通道双重聚类和多尺度频域掩蔽的角度出发,提出了DUET和MMFNet两种模型,为多变量时间序列预测提供了新的解决方案。为帮助想发论文的同学,我挑选了5篇最新的多时间序列预测的paper,把创新思路简单提炼了一下,方便大家找灵感。
点击【AI十八式】的主页,获取更多优质资源!
一、DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting
研究方法
论文提出了一种名为DUET的框架,通过在时间维度和通道维度上进行双重聚类来增强多变量时间序列预测。DUET包含两个关键模块:时间聚类模块(TCM)和通道聚类模块(CCM)。TCM通过将时间序列聚类到细粒度的分布中,使用不同的模式提取器来捕获每个分布簇的独特时间模式,从而建模时间模式的异质性。CCM采用通道软聚类策略,通过度量学习在频域中捕获通道间关系,并应用稀疏化以减轻噪声通道的不利影响。此外,DUET还设计了一个融合模块(FM),基于掩码注意力机制,将TCM提取的时间特征与CCM生成的通道掩码矩阵有效结合。
论文创新点
-
提出DUET框架:通过双重聚类策略,分别在时间维度和通道维度上对时间序列进行建模,有效处理时间分布变化和通道间复杂关系。
-
时间聚类模块(TCM):设计用于处理时间分布变化的模块,通过聚类时间序列到不同的分布簇中,并为每个簇设计特定的模式提取器,捕获时间模式的异质性。
-
通道聚类模块

最低0.47元/天 解锁文章
5408

被折叠的 条评论
为什么被折叠?



