DETR训练yolo格式数据集的全过程

文章内容主要是数据集的转换、DETR的训练过程、以及TXT格式文件计算mAP值的方法。

文章目录

  • 一、准备数据集
  • 二、训练过程
    • 1.修改相关参数
    • 2.训练过程可视化
  • 三、推理过程
    • 1.进行测试集的检测
    • 2.txt格式的标注文件进行mAP的计算


一、准备数据集

DETR训练需要的是.json格式的标注文件,而我们准备的是.txt格式的标注文件,因此,首先要把txt格式的标注文件转为.json格式的标注文件。 

注意:标注文件和对应的图片文件最好是全数字命名。

              

以上是txt格式数据集的结构,通过代码将其转为.json格式的数据集。

txt2json

import os
import cv2
import json
import argparse
from tqdm import tqdm

COCO_DICT = ['images', 'annotations', 'categories']
IMAGES_DICT = ['file_name', 'height', 'width', 'id']

ANNOTATIONS_DICT = ['image_id', 'iscrowd', 'area', 'bbox', 'category_id', 'id']

CATEGORIES_DICT = ['id', 'name']

YOLO_CATEGORIES = ['a','b','c','d','e','f']  # 替换为自己的标签名

parser = argparse.ArgumentParser(description='2COCO')
parser.add_argument('--image_path', type=str, default=r'C:/Users/Desktop/under/test2017/images/',
                    help='config file')  # 照片路径,train和val
parser.add_argument('--annotation_path', type=str, default=r'C:/Users/Desktop/under/test2017/labels/',
                    help='config file')  # label路径,train和val
parser.add_argument('--dataset', type=str, default='YOLO', help='config file')
parser.add_argument('--save', type=str, default='D:/ZZZ_My_file/detr-0.2/data/annotations/instances_test2017.json',
                    help='config file')  # 最后的json文件名
args = parser.parse_args()


def load_json(path):
    with open(path, 'r') as f:
        json_dict = json.load(f)
        for i in json_dict:
            print(i)
        print(json_dict['annotations'])


def save_json(dict, path):
    print('SAVE_JSON...')
    with open(path, 'w') as f:
        json.dump(dict, f)
    print('SUCCESSFUL_SAVE_JSON:', path)


def load_image(path):
    img = cv2.imread(path)
    return img.shape[0], img.shape[1]


def generate_categories_dict(category):  # ANNOTATIONS_DICT=['image_id','iscrowd','area','bbox','category_id','id']
    print('GENERATE_CATEGORIES_DICT...')
    return [{CATEGORIES_DICT[0]: category.index(x) + 1, CATEGORIES_DICT[1]: x} for x in
            category]  # CATEGORIES_DICT=['id','name']


def generate_images_dict(imagelist, image_path,
                         start_image_id=11725):  # IMAGES_DICT=['file_name','height','width','id']
    print('GENERATE_IMAGES_DICT...')
    images_dict = []
    with tqdm(total=len(imagelist)) as load_bar:
        for x in imagelist:  # x就是图片的名称
            # print(start_image_id)
            dict = {IMAGES_DICT[0]: x, IMAGES_DICT[1]: load_image(image_path + x)[0], \
                    IMAGES_DICT[2]: load_image(image_path + x)[1], IMAGES_DICT[3]: imagelist.index(x) + start_image_id}
            load_bar.update(1)
            images_dict.append(dict)
    return images_dict


def YOLO_Dataset(image_path, annotation_path, start_image_id=0, start_id=0):
    categories_dict = generate_categories_dict(YOLO_CATEGORIES)
    imgname = os.listdir(image_path)
    images_dict = generate_images_dict(imgname, image_path)
    print('GENERATE_ANNOTATIONS_DICT...')
    annotations_dict = []
    id = start_id
    for i in images_dict:
        image_id = i['id']
        image_name = i['file_name']
        W, H = i['width'], i['height']
        annotation_txt = annotation_path + image_name.split('.')[0] + '.txt'
        txt = open(annotation_txt, 'r')
        lines = txt.readlines()
        for j in lines:
            category_id = int(j.split(' ')[0]) + 1
            category = YOLO_CATEGORIES
            x = float(j.split(' ')[1])
            y = float(j.split(' ')[2])
            w = float(j.split(' ')[3])
            h = float(j.split(' ')[4])
            x_min = (x - w / 2) * W
            y_min = (y - h / 2) * H
            w = w * W
            h = h * H
            area = w * h
            bbox = [x_min, y_min, w, h]
            dict = {'image_id': image_id, 'iscrowd': 0, 'area': area, 'bbox': bbox, 'category_id': category_id,
                    'id': id}
            annotations_dict.append(dict)
            id = id + 1
    print('SUCCESSFUL_GENERATE_YOLO_JSON')
    return {COCO_DICT[0]: images_dict, COCO_DICT[1]: annotations_dict, COCO_DICT[2]: categories_dict}

    return {COCO_DICT[0]: images_dict, COCO_DICT[1]: annotations_dict, COCO_DICT[2]: categories_dict}


if __name__ == '__main__':
    dataset = args.dataset  # 数据集名字
    save = args.save  # json的保存路径
    image_path = args.image_path  # 对于coco是图片的路径
    annotation_path = args.annotation_path  # coco的annotation路径
    if dataset == 'YOLO':
        json_dict = YOLO_Dataset(image_path, annotation_path, 0)
    save_json(json_dict, save)

代码要修改的部分:

将列表中的类别替换为自己的数据集类别。

图片和标签改为自己的数据集路径,--save保存的格式要严格按照官方要求的格式,保存为如下名称,train和val保存格式与test的相同。

二、训练过程

1.修改相关参数

首先到官网上下载官方提供的预训练权重,通过代码将其转为自己的预训练权重。建议直接使用预训练权重训练,DETR从头开始训练很难,我在从头训练的过程中出现了AP值始终为0的问题,尚未解决。

import torch
pretrained_weights  = torch.load('detr-r50-e632da11.pth', weights_only=True)

#NWPU数据集,10类
num_class = 7    #类别数+1,1为背景
pretrained_weights["model"]["class_embed.weight"].resize_(num_class+1, 256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class+1)
torch.save(pretrained_weights, "detr-r50_%d.pth"%num_class)

因为训练中有一个类是背景类,所以这里面的num_class要改为自己的数据集类别加1。我的数据集是6个类别,因此这里的总类别数为7,运行后会得到新的权重文件。

在detr.py文件中找到build函数,将类别数改为自己的类别数加1,如上图。

接下来在coco.py中找到make_coco_transform函数,将image_set分别改为‘train2017’、‘val2017’、‘test2017’。

在main.py中设置以下参数:

设置完成即可运行代码,开始训练。

2.训练过程可视化

在plot_utils.py文件中加上如下代码运行,就可以得到图像。

关于这个地址中的\,如果运行不会出错,建议不要修改,我将其修改为/,会出现图片为空的情况。

if __name__ == '__main__':
    files = list(Path(r'D:\ZZZ_My_file\DETR\outputs\eval').glob('*.pth'))
    plot_precision_recall(files)
    plt.show()
    plot_logs(logs=Path(r'D:\ZZZ_My_file\DETR\outputs'),fields=('class_error', 'loss_bbox_unscaled', 'mAP'), ewm_col=0, log_name='log.txt')
    plt.show()

三、推理过程

1.进行测试集的检测

代码如下(示例):

import os
import cv2 as cv
import torch
from pathlib import Path
import numpy as np
from torch.utils.data import DataLoader
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import position_encoding, backbone, transformer, detr
from datasets import coco, coco_eval


def build_model():
    num_classes = 7
    device = torch.device('cuda')
    position_embedding = position_encoding.PositionEmbeddingSine(128, normalize=True)
    train_backbone = False

    # Backbone
    test_backbone = backbone.Backbone('resnet50', train_backbone, False, False)
    test_model = backbone.Joiner(test_backbone, position_embedding)
    test_model.num_channels = test_backbone.num_channels

    # Transformer
    test_transformer = transformer.Transformer(
        d_model=256,
        dropout=0.1,
        nhead=8,
        dim_feedforward=2048,
        num_encoder_layers=6,
        num_decoder_layers=6,
        normalize_before=False,
        return_intermediate_dec=True
    )

    # DETR Model
    model = detr.DETR(test_model, test_transformer, num_classes, num_queries=100, aux_loss=True)
    return model


def build_dataset(image_set):
    root = Path('D:/ZZZ_My_file/DETR/data')
    assert root.exists(), f'Error: Provided COCO path {root} does not exist!'

    PATHS = {
        "train2017": (root / "train2017", root / "annotations" / "instances_train2017.json"),
        "val2017": (root / "val2017", root / "annotations" / "instances_val2017.json"),
        "test2017": (root / "test2017", root / "annotations" / "instances_test2017.json"),
    }

    img_folder, ann_file = PATHS[image_set]
    print(f"Received image_set: {image_set}")

    dataset = coco.CocoDetection(str(img_folder), str(ann_file), transforms=coco.make_coco_transforms(image_set),
                                 return_masks=False)
    return dataset


def save_predictions(image_info, predictions, output_dir):
    """
    将预测结果保存到txt文件中
    :param image_info: 图像信息,包含file_name
    :param predictions: 预测结果,格式为[[class_id, confidence, x_min, y_min, x_max, y_max]]
    :param output_dir: 输出目录
    """
    # 创建输出目录如果不存在
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # 构建输出文件路径,去掉.jpg扩展名
    file_name_without_ext = os.path.splitext(image_info['file_name'])[0]
    output_file = os.path.join(output_dir, f"{file_name_without_ext}.txt")

    # 写入预测结果到文件
    with open(output_file, 'w') as f:
        for pred in predictions:
            f.write(f"{pred[0]} {pred[1]:.6f} {pred[2]:.6f} {pred[3]:.6f} {pred[4]:.6f} {pred[5]:.6f}\n")


def main(dataset_type):
    device = torch.device('cuda')
    model = build_model()
    model.to(device)

    # 加载数据集
    dataset_test = build_dataset(dataset_type)
    sampler_test = torch.utils.data.SequentialSampler(dataset_test)
    data_loader_test = DataLoader(dataset_test, batch_size=1, sampler=sampler_test,
                                  drop_last=False, collate_fn=utils.collate_fn, num_workers=0)
    base_ds = get_coco_api_from_dataset(dataset_test)

    # 加载模型权重
    load_path = 'D:\ZZZ_My_file\DETR\outputs\checkpoint.pth'
    checkpoint = torch.load(load_path, map_location='cpu')  # 修正错误
    model.load_state_dict(checkpoint["model"], strict=False)
    model.eval()

    postprocessors = {'bbox': detr.PostProcess()}
    coco_evaluator = coco_eval.CocoEvaluator(base_ds, ('bbox',))

    output_dir = f"D:/ZZZ_My_file/DETR/data/{dataset_type}/predictions"
    image_dir = f"D:/ZZZ_My_file/DETR/data/{dataset_type}"

    for img_data, target in data_loader_test:
        img_data = img_data.to(device)
        target = [{k: v.to(device) for k, v in t.items()} for t in target]

        if not target:
            print("❌ 错误:target 为空,无法获取 image_id!")
            continue

        output = model(img_data)
        orig_target_sizes = torch.stack([t["orig_size"] for t in target], dim=0)
        result = postprocessors['bbox'](output, orig_target_sizes)

        res = {t['image_id'].item(): output for t, output in zip(target, result)}

        if coco_evaluator is not None:
            coco_evaluator.update(res)

        for t in target:
            image_id = t['image_id'].item()
            res = res[image_id]

            # 从 COCO 数据集中查找文件名
            image_info = next((img for img in dataset_test.coco.dataset["images"] if img["id"] == image_id), None)
            if image_info:
                file_name = image_info["file_name"]
            else:
                print(f"⚠️ 警告:找不到 image_id {image_id} 对应的 file_name!")
                continue

            img_path = os.path.join(str(dataset_test.root), file_name)

            if not os.path.exists(img_path):
                print(f"❌ 错误:文件 {img_path} 不存在!")
                continue

            img = cv.imread(img_path)
            if img is None:
                print(f"❌ 错误:无法加载图片 {img_path},请检查文件格式!")
                continue

            res_index = []
            score = []
            min_score = 0.25
            res_label = []
            res_bbox = []

            num_detections = len(res['scores'])
            for i in range(num_detections):
                if float(res['scores'][i]) > min_score:
                    score.append(float(res['scores'][i]))
                    res_index.append(i)
                    res_label.append(int(res['labels'][i].cpu().numpy().item()))
                    res_bbox.append(res['boxes'][i].cpu().numpy().tolist())

            print(f"Processing {image_id}")
            print("Result:", score, res_label, res_bbox)

            # 画框
            for bbox in res_bbox:
                x_min, y_min, x_max, y_max = map(int, bbox)
                cv.rectangle(img, (x_min, y_min), (x_max, y_max), (255, 0, 0), 1)

            cv.imshow("Faceimglabel", img)
            cv.waitKey(20)  # 每张图片显示0.5秒后自动跳转
            cv.destroyAllWindows()  # 关闭窗口,防止图片重叠

            # 保存预测结果到txt文件
            predictions = [[res_label[i], score[i], bbox[0], bbox[1], bbox[2], bbox[3]] for i, bbox in enumerate(res_bbox)]
            save_predictions(image_info, predictions, output_dir)

    if coco_evaluator is not None:
        coco_evaluator.synchronize_between_processes()
        coco_evaluator.accumulate()
        coco_evaluator.summarize()
        print(coco_evaluator)


if __name__ == '__main__':
    dataset_type = "test2017"
    main(dataset_type)

修改类别数、修改路径、修改模型权重、

运行后会得到coco格式的评价指标,并在data文件夹下生成predictions文件夹,里面包含检测框信息。

2.txt格式的标注文件进行mAP的计算

yolo格式的标注文件中的真实框信息是经过归一化的,运行get_GT.py,将真实框信息转换为实际的坐标与尺寸。

   

第一个数字是类别,后面四个分别是坐标和宽高。

get_GT.py

import numpy as np
import cv2
import torch
import os

label_path = '../dataset/labels/test'
image_path = '../dataset/images/test'


# 坐标转换,原始存储的是YOLOv5格式
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
def xywhn2xyxy(x, w=800, h=800, padw=0, padh=0):
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
    return y


folder = os.path.exists('GT')
if not folder:
    os.makedirs('GT')

folderlist = os.listdir(label_path)
for i in folderlist:
    label_path_new = os.path.join(label_path, i)
    with open(label_path_new, 'r') as f:
        lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # predict_label

    read_label = label_path_new.replace(".txt", ".jpg")
    read_label_path = read_label.replace('labels/test', 'images/test')
    print(read_label_path)
    img = cv2.imread(str(read_label_path))
    h, w = img.shape[:2]
    lb[:, 1:] = xywhn2xyxy(lb[:, 1:], w, h, 0, 0)  # 反归一化
    for _, x in enumerate(lb):
        class_label = int(x[0])  # class
        cv2.rectangle(img, (round(x[1]), round(x[2])), (round(x[3]), round(x[4])), (0, 255, 0))
        with open('GT/' + i, 'a') as fw:
            fw.write(str(x[0]) + ' ' + str(x[1]) + ' ' + str(x[2]) + ' ' + str(x[3]) + ' ' + str(
                x[4]) + '\n')


运行测试代码后生成的预测框信息中的类别,因为多了一个空白类,因此要减去1,同时为了和真实框的类别匹配,转为小数点后一位。

运行代码,会将predictions文件夹中的txt文件中类别数减1,并转为小数点后一位。第二个数字是置信度分数。同时显示删除了predictions文件夹中几个空文件,因为如果存在空文件,计算mAP时,真实框文件夹和预测框文件夹无法匹配,导致计算错误。

import os


def delete_empty_txt_files(directory):
    deleted_count = 0

    # 遍历目录中的所有文件
    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)

        # 如果是txt文件
        if filename.endswith('.txt'):
            if os.path.getsize(file_path) == 0:
                os.remove(file_path)
                deleted_count += 1
            else:
                # 处理每个文件的内容
                modify_first_number_in_file(file_path)

    print(f"总共删除了 {deleted_count} 个文件。")


def modify_first_number_in_file(file_path):
    with open(file_path, 'r') as file:
        lines = file.readlines()

    # 修改每行的第一个数字(先减1,再变为小数点后一位)
    modified_lines = []
    for line in lines:
        parts = line.split()
        if parts:
            try:
                parts[0] = f"{(float(parts[0]) - 1):.1f}"
            except ValueError:
                pass  # 如果无法转换为浮点数,则跳过

        modified_lines.append(' '.join(parts) + '\n')  # 保持换行符

    # 将修改后的内容写回文件
    with open(file_path, 'w') as file:
        file.writelines(modified_lines)


# 使用示例
directory = "D:/ZZZ_My_file/DETR/data/test2017/predictions"  # 替换为你的目标目录
delete_empty_txt_files(directory)

上面已经将没有预测框的空文件删除了,但是为了mAP计算的准确性,要为没有预测框的文件制作虚拟预测框文件,我们运行generate_virtual_DR_files.py代码,他会检测GT和DR文件夹的区别,同时将DR文件夹中没有的文件,从GT中复制一份并改为置信度为0,保存在DR文件夹下的ZJ文件夹中,将ZJ中的虚拟框文件复制到DR中,即可完成两个文件夹的制作。

generate_virtual_DR_files.py
import sys
import os
import glob
import shutil

# Paths to the folders
GT_PATH = 'D:/ZZZ_My_file/DETR/mAP/GT'
DR_PATH = 'D:/ZZZ_My_file/DETR/mAP/DR'
backup_folder = 'ZJ'  # Backup folder where modified files will be stored

# Make sure the current working directory is correct
os.chdir(GT_PATH)
gt_files = glob.glob('*.txt')
if len(gt_files) == 0:
    print("Error: no .txt files found in", GT_PATH)
    sys.exit()
os.chdir(DR_PATH)
dr_files = glob.glob('*.txt')
if len(dr_files) == 0:
    print("Error: no .txt files found in", DR_PATH)
    sys.exit()

gt_files = set(gt_files)
dr_files = set(dr_files)
print('Total ground-truth files:', len(gt_files))
print('Total detection-results files:', len(dr_files))
print()

# Find the files that are in GT_PATH but not in DR_PATH
gt_backup = gt_files - dr_files


def backup_and_modify(src_folder, backup_files, backup_folder):
    # Create the backup folder if it doesn't exist
    if not os.path.exists(backup_folder):
        os.makedirs(backup_folder)

    # Process each file that needs to be backed up and modified
    for file in backup_files:
        # Copy the file to the backup folder
        shutil.copy(os.path.join(src_folder, file), os.path.join(backup_folder, file))

        # Open the file and modify its content
        with open(os.path.join(src_folder, file), 'r') as f:
            lines = f.readlines()

        # Modify the content of the file
        modified_lines = []
        for line in lines:
            parts = line.split()
            # Insert '0' after the first position (class_id), shifting the rest
            parts.insert(1, '0')
            modified_lines.append(' '.join(parts) + '\n')

        # Write the modified content back to the file in the backup folder
        with open(os.path.join(backup_folder, file), 'w') as f:
            f.writelines(modified_lines)


# Perform the backup and modification for the files that need to be moved
backup_and_modify(GT_PATH, gt_backup, backup_folder)

# Print the results
if gt_backup:
    print('Total ground-truth backup files:', len(gt_backup))
print("Backup and modification completed!")

此时运行get_mAP50.py,就可以计算出IOU为0.5时的mAP值。

import glob
import json
import os
import shutil
import operator
import sys
import argparse
import math

import numpy as np


MINOVERLAP = 0.5

parser = argparse.ArgumentParser()
parser.add_argument('-na', '--no-animation', help="no animation is shown.", action="store_true")
parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true")
parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true")
parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.")
parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.")
args = parser.parse_args()

'''
    0,0 ------> x (width)
     |
     |  (Left,Top)
     |      *_________
     |      |         |
            |         |
     y      |_________|
  (height)            *
                (Right,Bottom)
'''

if args.ignore is None:
    args.ignore = []

specific_iou_flagged = False
if args.set_class_iou is not None:
    specific_iou_flagged = True

os.chdir(os.path.dirname(os.path.abspath(__file__)))

GT_PATH = 'D:/ZZZ_My_file/DETR/mAP/GT'
DR_PATH = 'D:/ZZZ_My_file/DETR/mAP/DR'
IMG_PATH = '../dataset/images/test'
if os.path.exists(IMG_PATH):
    for dirpath, dirnames, files in os.walk(IMG_PATH):
        if not files:
            args.no_animation = True
else:
    args.no_animation = True

show_animation = False
if not args.no_animation:
    try:
        import cv2

        show_animation = True
    except ImportError:
        print("\"opencv-python\" not found, please install to visualize the results.")
        args.no_animation = True

draw_plot = False
if not args.no_plot:
    try:
        import matplotlib.pyplot as plt

        draw_plot = True
    except ImportError:
        print("\"matplotlib\" not found, please install it to get the resulting plots.")
        args.no_plot = True


def log_average_miss_rate(precision, fp_cumsum, num_images):
    """
        log-average miss rate:
            Calculated by averaging miss rates at 9 evenly spaced FPPI points
            between 10e-2 and 10e0, in log-space.
        output:
                lamr | log-average miss rate
                mr | miss rate
                fppi | false positives per image
        references:
            [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
               State of the Art." Pattern Analysis and Machine Intelligence, IEEE
               Transactions on 34.4 (2012): 743 - 761.
    """

    if precision.size == 0:
        lamr = 0
        mr = 1
        fppi = 0
        return lamr, mr, fppi

    fppi = fp_cumsum / float(num_images)
    mr = (1 - precision)

    fppi_tmp = np.insert(fppi, 0, -1.0)
    mr_tmp = np.insert(mr, 0, 1.0)

    ref = np.logspace(-2.0, 0.0, num=9)
    for i, ref_i in enumerate(ref):
        j = np.where(fppi_tmp <= ref_i)[-1][-1]
        ref[i] = mr_tmp[j]

    lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))

    return lamr, mr, fppi


"""
 throw error and exit
"""


def error(msg):
    print(msg)
    sys.exit(0)


"""
 check if the number is a float between 0.0 and 1.0
"""


def is_float_between_0_and_1(value):
    try:
        val = float(value)
        if val > 0.0 and val < 1.0:
            return True
        else:
            return False
    except ValueError:
        return False


"""
 Calculate the AP given the recall and precision array
    1st) We compute a version of the measured precision/recall curve with
         precision monotonically decreasing
    2nd) We compute the AP as the area under this curve by numerical integration.
"""


def voc_ap(rec, prec):
    """
    --- Official matlab code VOC2012---
    mrec=[0 ; rec ; 1];
    mpre=[0 ; prec ; 0];
    for i=numel(mpre)-1:-1:1
            mpre(i)=max(mpre(i),mpre(i+1));
    end
    i=find(mrec(2:end)~=mrec(1:end-1))+1;
    ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
    """
    rec.insert(0, 0.0)  # insert 0.0 at begining of list
    rec.append(1.0)  # insert 1.0 at end of list
    mrec = rec[:]
    prec.insert(0, 0.0)  # insert 0.0 at begining of list
    prec.append(0.0)  # insert 0.0 at end of list
    mpre = prec[:]
    """
     This part makes the precision monotonically decreasing
        (goes from the end to the beginning)
        matlab: for i=numel(mpre)-1:-1:1
                    mpre(i)=max(mpre(i),mpre(i+1));
    """
    for i in range(len(mpre) - 2, -1, -1):
        mpre[i] = max(mpre[i], mpre[i + 1])
    """
     This part creates a list of indexes where the recall changes
        matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
    """
    i_list = []
    for i in range(1, len(mrec)):
        if mrec[i] != mrec[i - 1]:
            i_list.append(i)  # if it was matlab would be i + 1
    """
     The Average Precision (AP) is the area under the curve
        (numerical integration)
        matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
    """
    ap = 0.0
    for i in i_list:
        ap += ((mrec[i] - mrec[i - 1]) * mpre[i])
    return ap, mrec, mpre


"""
 Convert the lines of a file to a list
"""


def file_lines_to_list(path):
    # open txt file lines to a list
    with open(path) as f:
        content = f.readlines()
    # remove whitespace characters like `\n` at the end of each line
    content = [x.strip() for x in content]
    return content


"""
 Draws text in image
"""


def draw_text_in_image(img, text, pos, color, line_width):
    font = cv2.FONT_HERSHEY_PLAIN
    fontScale = 1
    lineType = 1
    bottomLeftCornerOfText = pos
    cv2.putText(img, text,
                bottomLeftCornerOfText,
                font,
                fontScale,
                color,
                lineType)
    text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
    return img, (line_width + text_width)


"""
 Plot - adjust axes
"""


def adjust_axes(r, t, fig, axes):
    # get text width for re-scaling
    bb = t.get_window_extent(renderer=r)
    text_width_inches = bb.width / fig.dpi
    # get axis width in inches
    current_fig_width = fig.get_figwidth()
    new_fig_width = current_fig_width + text_width_inches
    propotion = new_fig_width / current_fig_width
    # get axis limit
    x_lim = axes.get_xlim()
    axes.set_xlim([x_lim[0], x_lim[1] * propotion])


"""
 Draw plot using Matplotlib
"""


def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color,
                   true_p_bar):
    # sort the dictionary by decreasing value, into a list of tuples
    sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
    # unpacking the list of tuples into two lists
    sorted_keys, sorted_values = zip(*sorted_dic_by_value)
    #
    if true_p_bar != "":
        """
         Special case to draw in:
            - green -> TP: True Positives (object detected and matches ground-truth)
            - red -> FP: False Positives (object detected but does not match ground-truth)
            - orange -> FN: False Negatives (object not detected but present in the ground-truth)
        """
        fp_sorted = []
        tp_sorted = []
        for key in sorted_keys:
            fp_sorted.append(dictionary[key] - true_p_bar[key])
            tp_sorted.append(true_p_bar[key])
        plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
        plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive',
                 left=fp_sorted)
        # add legend
        plt.legend(loc='lower right')
        """
         Write number on side of bar
        """
        fig = plt.gcf()  # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            fp_val = fp_sorted[i]
            tp_val = tp_sorted[i]
            fp_str_val = " " + str(fp_val)
            tp_str_val = fp_str_val + " " + str(tp_val)
            # trick to paint multicolor with offset:
            # first paint everything and then repaint the first number
            t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
            plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
            if i == (len(sorted_values) - 1):  # largest bar
                adjust_axes(r, t, fig, axes)
    else:
        plt.barh(range(n_classes), sorted_values, color=plot_color)
        """
         Write number on side of bar
        """
        fig = plt.gcf()  # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            str_val = " " + str(val)  # add a space before
            if val < 1.0:
                str_val = " {0:.2f}".format(val)
            t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
            # re-set axes to show number inside the figure
            if i == (len(sorted_values) - 1):  # largest bar
                adjust_axes(r, t, fig, axes)
    # set window title
    #fig.canvas.set_window_title(window_title)
    fig.canvas.manager.window.title(window_title)
    # write classes in y axis
    tick_font_size = 12
    plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
    """
     Re-scale height accordingly
    """
    init_height = fig.get_figheight()
    # comput the matrix height in points and inches
    dpi = fig.dpi
    height_pt = n_classes * (tick_font_size * 1.4)  # 1.4 (some spacing)
    height_in = height_pt / dpi
    # compute the required figure height
    top_margin = 0.15  # in percentage of the figure height
    bottom_margin = 0.05  # in percentage of the figure height
    figure_height = height_in / (1 - top_margin - bottom_margin)
    # set new height
    if figure_height > init_height:
        fig.set_figheight(figure_height)

    # set plot title
    plt.title(plot_title, fontsize=14)
    # set axis titles
    # plt.xlabel('classes')
    plt.xlabel(x_label, fontsize='large')
    # adjust size of window
    fig.tight_layout()
    # save the plot
    fig.savefig(output_path)
    # show image
    if to_show:
        plt.show()
    # close the plot
    plt.close()


"""
 Create a ".temp_files/" and "results/" directory
"""
TEMP_FILES_PATH = ".temp_files"
if not os.path.exists(TEMP_FILES_PATH):  # if it doesn't exist already
    os.makedirs(TEMP_FILES_PATH)
results_files_path = "mAP50"
if os.path.exists(results_files_path):  # if it exist already
    # reset the results directory
    shutil.rmtree(results_files_path)

os.makedirs(results_files_path)
if draw_plot:
    os.makedirs(os.path.join(results_files_path, "AP"))
    os.makedirs(os.path.join(results_files_path, "F1"))
    os.makedirs(os.path.join(results_files_path, "Recall"))
    os.makedirs(os.path.join(results_files_path, "Precision"))
if show_animation:
    os.makedirs(os.path.join(results_files_path, "images", "detections_one_by_one"))

"""
 ground-truth
     Load each of the ground-truth files into a temporary ".json" file.
     Create a list of all the class names present in the ground-truth (gt_classes).
"""
# get a list with the ground-truth files
ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
if len(ground_truth_files_list) == 0:
    error("Error: No ground-truth files found!")
ground_truth_files_list.sort()
# dictionary with counter per class
gt_counter_per_class = {}
counter_images_per_class = {}

for txt_file in ground_truth_files_list:
    # print(txt_file)
    file_id = txt_file.split(".txt", 1)[0]
    file_id = os.path.basename(os.path.normpath(file_id))
    # check if there is a correspondent detection-results file
    temp_path = os.path.join(DR_PATH, (file_id + ".txt"))
    if not os.path.exists(temp_path):
        error_msg = "Error. File not found: {}\n".format(temp_path)
        error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)"
        error(error_msg)
    lines_list = file_lines_to_list(txt_file)
    # create ground-truth dictionary
    bounding_boxes = []
    is_difficult = False
    already_seen_classes = []
    for line in lines_list:
        try:
            if "difficult" in line:
                class_name, left, top, right, bottom, _difficult = line.split()
                is_difficult = True
            else:
                class_name, left, top, right, bottom = line.split()

        except:
            if "difficult" in line:
                line_split = line.split()
                _difficult = line_split[-1]
                bottom = line_split[-2]
                right = line_split[-3]
                top = line_split[-4]
                left = line_split[-5]
                class_name = ""
                for name in line_split[:-5]:
                    class_name += name + " "
                class_name = class_name[:-1]
                is_difficult = True
            else:
                line_split = line.split()
                bottom = line_split[-1]
                right = line_split[-2]
                top = line_split[-3]
                left = line_split[-4]
                class_name = ""
                for name in line_split[:-4]:
                    class_name += name + " "
                class_name = class_name[:-1]
        if class_name in args.ignore:
            continue
        bbox = left + " " + top + " " + right + " " + bottom
        if is_difficult:
            bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False, "difficult": True})
            is_difficult = False
        else:
            bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False})
            if class_name in gt_counter_per_class:
                gt_counter_per_class[class_name] += 1
            else:
                gt_counter_per_class[class_name] = 1

            if class_name not in already_seen_classes:
                if class_name in counter_images_per_class:
                    counter_images_per_class[class_name] += 1
                else:
                    counter_images_per_class[class_name] = 1
                already_seen_classes.append(class_name)

    with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
        json.dump(bounding_boxes, outfile)

gt_classes = list(gt_counter_per_class.keys())
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)

"""
 Check format of the flag --set-class-iou (if used)
    e.g. check if class exists
"""
if specific_iou_flagged:
    n_args = len(args.set_class_iou)
    error_msg = \
        '\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]'
    if n_args % 2 != 0:
        error('Error, missing arguments. Flag usage:' + error_msg)
    # [class_1] [IoU_1] [class_2] [IoU_2]
    # specific_iou_classes = ['class_1', 'class_2']
    specific_iou_classes = args.set_class_iou[::2]  # even
    # iou_list = ['IoU_1', 'IoU_2']
    iou_list = args.set_class_iou[1::2]  # odd
    if len(specific_iou_classes) != len(iou_list):
        error('Error, missing arguments. Flag usage:' + error_msg)
    for tmp_class in specific_iou_classes:
        if tmp_class not in gt_classes:
            error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg)
    for num in iou_list:
        if not is_float_between_0_and_1(num):
            error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg)

"""
 detection-results
     Load each of the detection-results files into a temporary ".json" file.
"""
dr_files_list = glob.glob(DR_PATH + '/*.txt')
dr_files_list.sort()

for class_index, class_name in enumerate(gt_classes):
    bounding_boxes = []
    for txt_file in dr_files_list:
        file_id = txt_file.split(".txt", 1)[0]
        file_id = os.path.basename(os.path.normpath(file_id))
        temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
        if class_index == 0:
            if not os.path.exists(temp_path):
                error_msg = "Error. File not found: {}\n".format(temp_path)
                error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)"
                error(error_msg)
        lines = file_lines_to_list(txt_file)
        for line in lines:
            try:
                tmp_class_name, confidence, left, top, right, bottom = line.split()
            except:
                line_split = line.split()
                bottom = line_split[-1]
                right = line_split[-2]
                top = line_split[-3]
                left = line_split[-4]
                confidence = line_split[-5]
                tmp_class_name = ""
                for name in line_split[:-5]:
                    tmp_class_name += name + " "
                tmp_class_name = tmp_class_name[:-1]

            if tmp_class_name == class_name:
                bbox = left + " " + top + " " + right + " " + bottom
                bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox})

    bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True)
    with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
        json.dump(bounding_boxes, outfile)

"""
 Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
lamr_dictionary = {}
with open(results_files_path + "/results.txt", 'w') as results_file:
    results_file.write("# AP and precision/recall per class\n")
    count_true_positives = {}

    for class_index, class_name in enumerate(gt_classes):
        count_true_positives[class_name] = 0
        """
         Load detection-results of that class
        """
        dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
        dr_data = json.load(open(dr_file))
        """
         Assign detection-results to ground-truth objects
        """
        nd = len(dr_data)
        tp = [0] * nd
        fp = [0] * nd
        score = [0] * nd
        score05_idx = 0
        for idx, detection in enumerate(dr_data):
            file_id = detection["file_id"]
            score[idx] = float(detection["confidence"])
            if score[idx] > 0.5:
                score05_idx = idx

            if show_animation:
                ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
                if len(ground_truth_img) == 0:
                    error("Error. Image not found with id: " + file_id)
                elif len(ground_truth_img) > 1:
                    error("Error. Multiple image with id: " + file_id)
                else:
                    img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
                    img_cumulative_path = results_files_path + "/images/" + ground_truth_img[0]
                    if os.path.isfile(img_cumulative_path):
                        img_cumulative = cv2.imread(img_cumulative_path)
                    else:
                        img_cumulative = img.copy()
                    bottom_border = 60
                    BLACK = [0, 0, 0]
                    img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)

            gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
            ground_truth_data = json.load(open(gt_file))
            ovmax = -1
            gt_match = -1
            bb = [float(x) for x in detection["bbox"].split()]
            for obj in ground_truth_data:
                if obj["class_name"] == class_name:
                    bbgt = [float(x) for x in obj["bbox"].split()]
                    bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])]
                    iw = bi[2] - bi[0] + 1
                    ih = bi[3] - bi[1] + 1
                    if iw > 0 and ih > 0:
                        # compute overlap (IoU) = area of intersection / area of union
                        ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
                                                                          + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
                        ov = iw * ih / ua
                        if ov > ovmax:
                            ovmax = ov
                            gt_match = obj

            if show_animation:
                status = "NO MATCH FOUND!"
            min_overlap = MINOVERLAP
            if specific_iou_flagged:
                if class_name in specific_iou_classes:
                    index = specific_iou_classes.index(class_name)
                    min_overlap = float(iou_list[index])
            if ovmax >= min_overlap:
                if "difficult" not in gt_match:
                    if not bool(gt_match["used"]):
                        tp[idx] = 1
                        gt_match["used"] = True
                        count_true_positives[class_name] += 1
                        with open(gt_file, 'w') as f:
                            f.write(json.dumps(ground_truth_data))
                        if show_animation:
                            status = "MATCH!"
                    else:
                        fp[idx] = 1
                        if show_animation:
                            status = "REPEATED MATCH!"
            else:
                fp[idx] = 1
                if ovmax > 0:
                    status = "INSUFFICIENT OVERLAP"

            """
             Draw image to show animation
            """
            if show_animation:
                height, widht = img.shape[:2]
                # colors (OpenCV works with BGR)
                white = (255, 255, 255)
                light_blue = (255, 200, 100)
                green = (0, 255, 0)
                light_red = (30, 30, 255)
                # 1st line
                margin = 10
                v_pos = int(height - margin - (bottom_border / 2.0))
                text = "Image: " + ground_truth_img[0] + " "
                img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
                text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
                img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
                if ovmax != -1:
                    color = light_red
                    if status == "INSUFFICIENT OVERLAP":
                        text = "IoU: {0:.2f}% ".format(ovmax * 100) + "< {0:.2f}% ".format(min_overlap * 100)
                    else:
                        text = "IoU: {0:.2f}% ".format(ovmax * 100) + ">= {0:.2f}% ".format(min_overlap * 100)
                        color = green
                    img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
                # 2nd line
                v_pos += int(bottom_border / 2.0)
                rank_pos = str(idx + 1)  # rank position (idx starts at 0)
                text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(
                    float(detection["confidence"]) * 100)
                img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
                color = light_red
                if status == "MATCH!":
                    color = green
                text = "Result: " + status + " "
                img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)

                font = cv2.FONT_HERSHEY_SIMPLEX
                if ovmax > 0:  # if there is intersections between the bounding-boxes
                    bbgt = [int(round(float(x))) for x in gt_match["bbox"].split()]
                    cv2.rectangle(img, (bbgt[0], bbgt[1]), (bbgt[2], bbgt[3]), light_blue, 2)
                    cv2.rectangle(img_cumulative, (bbgt[0], bbgt[1]), (bbgt[2], bbgt[3]), light_blue, 2)
                    cv2.putText(img_cumulative, class_name, (bbgt[0], bbgt[1] - 5), font, 0.6, light_blue, 1,
                                cv2.LINE_AA)
                bb = [int(i) for i in bb]
                cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), color, 2)
                cv2.rectangle(img_cumulative, (bb[0], bb[1]), (bb[2], bb[3]), color, 2)
                cv2.putText(img_cumulative, class_name, (bb[0], bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
                # show image
                cv2.imshow("Animation", img)
                cv2.waitKey(20)  # show for 20 ms
                # save image to results
                output_img_path = results_files_path + "/images/detections_one_by_one/" + class_name + "_detection" + str(
                    idx) + ".jpg"
                cv2.imwrite(output_img_path, img)
                # save the image with all the objects drawn to it
                cv2.imwrite(img_cumulative_path, img_cumulative)

        cumsum = 0
        for idx, val in enumerate(fp):
            fp[idx] += cumsum
            cumsum += val

        cumsum = 0
        for idx, val in enumerate(tp):
            tp[idx] += cumsum
            cumsum += val

        rec = tp[:]
        for idx, val in enumerate(tp):
            rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)

        prec = tp[:]
        for idx, val in enumerate(tp):
            prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)

        ap, mrec, mprec = voc_ap(rec[:], prec[:])
        F1 = np.array(rec) * np.array(prec) * 2 / np.where((np.array(prec) + np.array(rec)) == 0, 1,
                                                           (np.array(prec) + np.array(rec)))

        sum_AP += ap
        text = "{0:.2f}%".format(ap * 100) + " = " + class_name + " AP "  # class_name + " AP = {0:.2f}%".format(ap*100)

        if len(prec) > 0:
            F1_text = "{0:.2f}".format(F1[score05_idx]) + " = " + class_name + " F1 "
            Recall_text = "{0:.2f}%".format(rec[score05_idx] * 100) + " = " + class_name + " Recall "
            Precision_text = "{0:.2f}%".format(prec[score05_idx] * 100) + " = " + class_name + " Precision "
        else:
            F1_text = "0.00" + " = " + class_name + " F1 "
            Recall_text = "0.00%" + " = " + class_name + " Recall "
            Precision_text = "0.00%" + " = " + class_name + " Precision "

        rounded_prec = ['%.2f' % elem for elem in prec]
        rounded_rec = ['%.2f' % elem for elem in rec]
        results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
        if not args.quiet:
            if len(prec) > 0:
                print(text + "\t||\tscore_threhold=0.5 : " + "F1=" + "{0:.2f}".format(F1[score05_idx]) \
                      + " ; Recall=" + "{0:.2f}%".format(rec[score05_idx] * 100) + " ; Precision=" + "{0:.2f}%".format(
                    prec[score05_idx] * 100))
            else:
                print(text + "\t||\tscore_threhold=0.5 : F1=0.00% ; Recall=0.00% ; Precision=0.00%")
        ap_dictionary[class_name] = ap

        n_images = counter_images_per_class[class_name]
        lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
        lamr_dictionary[class_name] = lamr

        """
         Draw plot
        """
        if draw_plot:
            plt.plot(rec, prec, '-o')
            area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
            area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
            plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')

            fig = plt.gcf()
            #fig.canvas.set_window_title('AP ' + class_name)

            plt.title('class: ' + text)
            plt.xlabel('Recall')
            plt.ylabel('Precision')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/AP/" + class_name + ".png")
            plt.cla()

            plt.plot(score, F1, "-", color='orangered')
            plt.title('class: ' + F1_text + "\nscore_threhold=0.5")
            plt.xlabel('Score_Threhold')
            plt.ylabel('F1')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/F1/" + class_name + ".png")
            plt.cla()

            plt.plot(score, rec, "-H", color='gold')
            plt.title('class: ' + Recall_text + "\nscore_threhold=0.5")
            plt.xlabel('Score_Threhold')
            plt.ylabel('Recall')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/Recall/" + class_name + ".png")
            plt.cla()

            plt.plot(score, prec, "-s", color='palevioletred')
            plt.title('class: ' + Precision_text + "\nscore_threhold=0.5")
            plt.xlabel('Score_Threhold')
            plt.ylabel('Precision')
            axes = plt.gca()
            axes.set_xlim([0.0, 1.0])
            axes.set_ylim([0.0, 1.05])
            fig.savefig(results_files_path + "/Precision/" + class_name + ".png")
            plt.cla()

    if show_animation:
        cv2.destroyAllWindows()

    results_file.write("\n# mAP50 of all classes\n")
    mAP = sum_AP / n_classes
    text = "mAP50 = {0:.2f}%".format(mAP * 100)
    results_file.write(text + "\n")
    print(text)

# remove the temp_files directory
shutil.rmtree(TEMP_FILES_PATH)

"""
 Count total of detection-results
"""
# iterate through all the files
det_counter_per_class = {}
for txt_file in dr_files_list:
    # get lines to list
    lines_list = file_lines_to_list(txt_file)
    for line in lines_list:
        class_name = line.split()[0]
        # check if class is in the ignore list, if yes skip
        if class_name in args.ignore:
            continue
        # count that object
        if class_name in det_counter_per_class:
            det_counter_per_class[class_name] += 1
        else:
            # if class didn't exist yet
            det_counter_per_class[class_name] = 1
# print(det_counter_per_class)
dr_classes = list(det_counter_per_class.keys())

"""
 Plot the total number of occurences of each class in the ground-truth
"""
if draw_plot:
    window_title = "ground-truth-info"
    plot_title = "ground-truth\n"
    plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
    x_label = "Number of objects per class"
    output_path = results_files_path + "/ground-truth-info.png"
    to_show = False
    plot_color = 'forestgreen'
    draw_plot_func(
        gt_counter_per_class,
        n_classes,
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        '',
    )

"""
 Write number of ground-truth objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
    results_file.write("\n# Number of ground-truth objects per class\n")
    for class_name in sorted(gt_counter_per_class):
        results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")

"""
 Finish counting true positives
"""
for class_name in dr_classes:
    # if class exists in detection-result but not in ground-truth then there are no true positives in that class
    if class_name not in gt_classes:
        count_true_positives[class_name] = 0
# print(count_true_positives)

"""
 Plot the total number of occurences of each class in the "detection-results" folder
"""
if draw_plot:
    window_title = "detection-results-info"
    # Plot title
    plot_title = "detection-results\n"
    plot_title += "(" + str(len(dr_files_list)) + " files and "
    count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
    plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
    # end Plot title
    x_label = "Number of objects per class"
    output_path = results_files_path + "/detection-results-info.png"
    to_show = False
    plot_color = 'forestgreen'
    true_p_bar = count_true_positives
    draw_plot_func(
        det_counter_per_class,
        len(det_counter_per_class),
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        true_p_bar
    )

"""
 Write number of detected objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
    results_file.write("\n# Number of detected objects per class\n")
    for class_name in sorted(dr_classes):
        n_det = det_counter_per_class[class_name]
        text = class_name + ": " + str(n_det)
        text += " (tp:" + str(count_true_positives[class_name]) + ""
        text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
        results_file.write(text)

"""
 Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
"""
if draw_plot:
    window_title = "lamr"
    plot_title = "log-average miss rate"
    x_label = "log-average miss rate"
    output_path = results_files_path + "/lamr.png"
    to_show = False
    plot_color = 'royalblue'
    draw_plot_func(
        lamr_dictionary,
        n_classes,
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        ""
    )

"""
 Draw mAP50 plot (Show AP's of all classes in decreasing order)
"""
if draw_plot:
    window_title = "mAP50"
    plot_title = "mAP50 = {0:.2f}%".format(mAP * 100)
    x_label = "Average Precision"
    output_path = results_files_path + "/mAP50.png"
    to_show = True
    plot_color = 'royalblue'
    draw_plot_func(
        ap_dictionary,
        n_classes,
        window_title,
        plot_title,
        x_label,
        output_path,
        to_show,
        plot_color,
        ""
    )

运行结果如图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值