既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
CH和ORA都基于SQL语言,但是ORA能优化出来的语句,CH却跑不出来,更证明CH的优化引擎能力比较差。
坊间传说,CH只擅长做单表遍历运算,有关联运算时甚至跑不过MySQL,看来并非虚妄胡说。想用CH的同学要掂量一下了,这种场景到底能有多大的适应面?
esProc SPL登场
开源esProc SPL也是以高性能作为宣传点,那么我们再来比较一下。
仍然是跑TPC-H来看 :
Q2、Q3、Q7这些较复杂的运算,SPL比CH和ORA跑的都快。CH跑不出结果的Q8、Q9,SPL分别跑了37秒和68秒,也比ORA快。原因在于SPL可以采用更优的算法,其计算复杂度低于被ORA优化过的SQL,更远低于CH执行的SQL,再加上列存,最终是用Java开发的SPL跑赢了C++实现的CH和ORA。
大概可以得到结论,esProc SPL无论做简单计算,还是复杂计算性能都非常好。
不过,Q1这种简单运算,CH比SPL还是略胜了一筹。似乎可以进一步证明前面的结论,即CH特别擅长简单遍历运算。
且慢,SPL还有秘密武器。
SPL的企业版中提供了列式游标机制,我们再来对比测试一下:在8亿条数据量下,做最简单的分组汇总计算,对比SPL(使用列式游标)和CH的性能。(采用的机器配置比前面做TPC-H测试时略低,因此测出的结果不同,不过这里主要看相对值。)
简单分组汇总对应CH的SQL语句是:
SQL1:
SELECT mod(id, 100) AS Aid, max(amount) AS Amax
FROM test.t
GROUP BY mod(id, 100)
这个测试的结果是下图这样:
SPL使用列式游标机制之后,简单遍历分组计算的性能也和CH一样了。如果在TPC-H的Q1测试中也使用列式游标,SPL也会达到和CH同样的性能。
测试过程中发现,8亿条数据存成文本格式占用磁盘15G,在CH中占用5.4G,SPL占用8G。说明CH和SPL都采用了压缩存储,CH的压缩比更高些,也进一步证明CH的存储引擎做得确实不错。不过,SPL也可以达到和CH同样的性能,这说明SPL存储引擎和算法优化做得都比较好,高性能计算能力更加均衡。
当前版本的SPL是用Java写的,Java读数后生成用于计算的对象的速度很慢,而用C++开发的CH则没有这个问题。对于复杂的运算,读数时间占比不高,Java生成对象慢造成的拖累还不明显;而对于简单的遍历运算,读数时间占比很高,所以前面测试中SPL就会比CH更慢。列式游标优化了读数方案,不再生成一个个小对象,使对象生成次数大幅降低,这时候就能把差距拉回来了。单纯从存储本身看,SPL和CH相比并没有明显的优劣之分。
接下来再看常规TopN的对比测试,CH的SQL是:
SQL2:
SELECT * FROM test.t ORDER BY amount DESC LIMIT 100
对比测试结果是这样的:
单看CH的SQL2,常规TopN的计算方法是全排序后取出前N条数据。数据量很大时,如果真地做全排序,性能会非常差。SQL2的测试结果说明,CH应该和SPL一样做了优化,没有全排序,所以两者性能都很快,SPL稍快一些。
也就是说,无论简单运算还是复杂运算,esProc SPL都能更胜一筹。
进一步的差距
差距还不止于此。
正如前面所说,CH和ORA使用SQL语言,都是基于关系模型的,所以都面临SQL优化的问题。TPC-H测试证明,ORA能优化的一些场景CH却优化不了,甚至跑不出结果。那么,如果面对一些ORA也不会优化的计算,CH就更不会优化了。比如说我们将SQL1的简单分组汇总,改为两种分组汇总结果再连接,CH的SQL写出来大致是这样:
SQL3:
SELECT *
FROM (
SELECT mod(id, 100) AS Aid, max(amount) AS Amax
FROM test.t
GROUP BY mod(id, 100)
) A
JOIN (
SELECT floor(id / 200000) AS Bid, min(amount) AS Bmin
FROM test.t
GROUP BY floor(id / 200000)
) B
ON A.Aid = B.Bid
这种情况下,对比测试的结果是CH的计算时间翻倍,SPL则不变:
这是因为SPL不仅使用了列式游标,还使用了遍历复用机制,能在一次遍历过程中计算出多种分组结果,可以减少很多硬盘访问量。CH使用的SQL无法写出这样的运算,只能靠CH自身的优化能力了。而CH算法优化能力又很差,其优化引擎在这个测试中没有起作用,只能遍历两次,所以性能下降了一倍。
SPL实现遍历复用的代码很简单,大致是这样:
A | B | |
1 | =file(“topn.ctx”).open().cursor@mv(id,amount) | |
2 | cursor A1 | =A2.groups(id%100:Aid;max(amount):Amax) |
3 | cursor | =A3.groups(id\200000:Bid;min(amount):Bmin) |
4 | =A2.join@i(Aid,A3:Bid,Bid,Bmin) |
再将SQL2常规TopN计算,调整为分组后求组内TopN。对应SQL是:
SQL4:
SELECT
gid,
groupArray(100)(amount) AS amount
FROM
(
SELECT
mod(id, 10) AS gid,
amount
FROM test.topn
ORDER BY
gid ASC,
amount DESC
) AS a
GROUP BY gid
这个分组TopN测试的对比结果是下面这样的:
CH做分组TopN计算比常规TopN慢了42倍,说明CH在这种情况下很可能做了排序动作。也就是说,情况复杂化之后,CH的优化引擎又不起作用了。与SQL不同,SPL把TopN看成是一种聚合运算,和sum、count这类运算的计算逻辑是一样的,都只需要对原数据遍历一次。这样,分组求组内TopN就和分组求和、计数一样了,可以避免排序计算。因此,SPL计算分组TopN比CH快了22倍。
而且,SPL计算分组TopN的代码也不复杂:
A | |
1 | =file(“topn.ctx”).open().cursor@mv(id,amount) |
2 | =A1.groups(id%10:gid;top(10;-amount)).news(#2;gid,~.amount) |
不只是跑得快
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新