Keras学习之三:用CNN实现cifar10图像分类模型

Keras学习之三:用CNN实现cifar10图像分类模型


1 卷积神经网络简介

卷积神经网络和全连接神经网络一样,都是由多个神经网络层连接而成。不同的是CNN一般是由多个卷积层,池化层交替连接起来,用于提取输入数据的高层特征,并缩小数据的维度。最后对提取出的特征进行神经网络分类形成最终的输出。更详细的卷积神经网络相关知识可参见第4节提供的链接。

2 Keras对CNN的支持

keras.layers包中实现了与CNN相关的层模型,分别实现在convolutional和pooling模块中。

2.1 convolutional模块

convolutional模块中实现了卷积层的层模型,用于数据的特征提取。

层名 作用 原型
Conv1D 1维卷积层 Conv1D(filters, kernel_size, strides=1, padding=’valid’)
Conv2D 2维卷积层 Conv2D(filters, kernel_size, strides=(1, 1), padding=’valid’,dilation_rate=(1, 1))
UpSampling1D 1维上采样,将数据重复指定的次数 UpSampling2D(size=2)
UpSampling2D 2维上采样,将数据在2个维度上重复指定的次数 UpSampling2D(size=(2, 2))
ZeroPadding2D 边界填充0 ZeroPadding2D(padding=(1, 1))

2D参数说明:

参数 说明
filters 卷积核的数目,也是处理后输出的深度
kernel_size 过滤器的窗口大小
strides 过滤器卷积的步长
paddi
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值