评估模型归纳起来就是将数据分为训练、验证和测试三个部分
- 简单的坚持验证集
选一部分数据作为测试集,在剩余的数据上训练,最后在测试集上评估。

num_validation_samples = 10000
# Shuffling the data is usually appropriate
np.random.shuffle(data)
# Define the validation set
validation_data = data[:num_validation_samples]
data = [num_validation_samples:]
# Define the training set
training_data = data[:]
# Train a model on the training data
# and evaluate it on the validation data
model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)
# At this point you can tune your model,
# retrain it, evaluate it, tune it again...
# Once you have tuned your hyperparameters,
# is it common to train your final model from scratch
# on all non-test data available.
model = get_model()
model.train(np.concatenate([training_data,
validation_data]))
test_score = model.evaluate(

本文介绍了评估机器学习模型的三种方法:简单验证集、测试集评估和k-fold交叉验证。通过随机打乱数据,选择部分作为验证集,其余用于训练,最后在独立的测试集上评估模型性能。对于复杂情况,尤其是小样本数据,k-fold验证能有效减少数据划分对结果的影响,其通过将数据分为k个部分,依次用每部分作为验证集,其余作为训练集,最后取平均得分作为最终评价。
最低0.47元/天 解锁文章
3836

被折叠的 条评论
为什么被折叠?



