计算机视觉学习9_KNN算法_稠密SIFT(Dense-sift)_图像识别(手势识别)

原理部分

KNN算法原理

参考博客:https://blog.youkuaiyun.com/jmydream/article/details/8644004

在这里插入图片描述
kNN算法则是从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别。该算法涉及3个主要因素:训练集、距离或相似的衡量、k的大小。

kNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。

计算步骤:
1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类

2、距离或相似度的衡量
什么是合适的距离衡量?距离越近应该意味着这两个点属于一个分类的可能性越大。
觉的距离衡量包括欧式距离、夹角余弦等。
对于文本分类来说,使用余弦(cosine)来计算相似度就比欧式(Euclidean)距离更合适。

3、类别的判定
投票决定:少数服从多数,近邻中哪个类别的点最多就分为该类。
加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)

优缺点

1、优点
简单,易于理解,易于实现,无需估计参数,无需训练
适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型)
特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好

2、缺点
懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢
可解释性较差,无法给出决策树那样的规则。

Dense-sift(稠密SIFT)原理

图像检索总是用SIFT(利用了检测子)
大多数情况下我们并没有训练样本。因此,我们需要利用人的经验过滤区分性低的点(除此之外还引入了IDF进一步加权)。因此,大部分检索问题都利用了检测子,而不是密集采样。

图像识别问题大多用Dense-SIFT
Dense-SIFT在非深度学习的模型中,常常是特征提取的第一步
对于图像识别问题来说,由于有充足的训练样本(正负样本均充足)。通过对训练样本的学习,我们会学习一个分类器
在这里插入图片描述
总而言之,当研究目标是对同样的物体或者场景寻找对应关系(correspondence)时, SIFT更好。而研究目标是图像表示或者场景理解时,Dense SIFT更好,因为即使密集采样的区域不能够被准确匹配,这块区域也包含了表达图像内容的信息。

代码实现

KNN算法实现

实现最基本的 KNN算法

class KnnClassifier(object):
    
    def __init__(self,labels,samples):
        """ Initialize classifier with training data.使用训练数据初始化分类器  """
        
        self.labels = labels
        self.samples = samples
    
    def classify(self,point,k=3):
        """ Classify a point against k nearest 
            in the training data, return label. 
             在训练数据上采用 k 近邻分类,并返回标记
        """
        
        # compute distance to all training points 计算所有训练数据点的距离
        dist = array([L2dist(point,s) for s in self.samples])
        
        # sort them 对它们进行排序  
        ndx = dist.argsort()
        
        # use dictionary to store the k nearest   用字典存储 k 近邻
        votes = {}
        for i in range(k):
            label = self.labels[ndx[i]]
            votes.setdefault(label,0)
            votes[label] += 1
            
        return max(votes, key=lambda x: votes.get(x))

定义一个类并用训练数据初始化非常简单 ; 每次想对某些东西进行分类时,用 KNN 方法,我们就没有必要存储并将训练数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值