PCL Corespondence Grouping 方法进行3D模板匹配

本文详细介绍了使用Point Cloud Library(PCL)中的对应分组技术进行3D模板匹配的原理与步骤。通过理解点云数据的特征,应用PCL库中的方法,实现精确的三维匹配,为3D场景识别与重建提供关键技术支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
* 此例程使用pcl_recognition 组件讲解 3D目标的识别。特别指出,例程主要讲解Corespondence Grouping算法
* 通过点对点的比对相似性进行点阵的聚类来识别场景中的物体。每一个输出点阵,都是识别的物体的实例,另外
* 算法还输出一个6DOF的转换矩阵来表示目标在场景中的位姿信息
* 
* 
*/


#include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <pcl/correspondence.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/shot_omp.h>
#include <pcl/features/board.h>
#include <pcl/filters/uniform_sampling.h>
#include <pcl/recognition/cg/hough_3d.h>
#include <pcl/recognition/cg/geometric_consistency.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/kdtree/impl/kdtree_flann.hpp>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h>

typedef pcl::PointXYZRGBA PointType;
typedef pcl::Normal NormalType;
typedef pcl::ReferenceFrame RFType;
typedef pcl::SHOT352 DescriptorType;

std::string model_filename_;
std::string scene_filename_;

//Algorithm params
bool show_keypoints_      (false);
bool show_correspondences_(false);
bool use_cloud_resolution_(false);
bool  use_hough_          (true);
float model_ss_           (0.01f);
float scene_ss_           (0.03f);
float rf_rad_             (0.015f);
float descr_rad_          (0.02f);
float cg_size_            (0.01f);
float cg_thresh_          (5.0f);

void
showHelp(char* filename)
{
   
   
    std::cout << std::endl;
    std::cout << "***************************************************************************" << std::endl;
    std::cout << "*                                                                         *" << std::endl;
    std::cout << "*             Correspondence Grouping Tutorial - Usage Guide              *" << std::endl;
    std::cout << "*                                                                         *" << std::endl;
    std::cout << "***************************************************************************" << std::endl << std::endl;
    std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
    std::cout << "Options:" << std::endl;
    std::cout << "     -h:                     Show this help." << std::endl;
    std::cout << "     -k:                     Show used keypoints." << std::endl;
    std::cout << "     -c:                     Show used correspondences." << std::endl;
    std::cout << "     -r:                     Compute the model cloud resolution and multiply" << std::endl;
    std::cout << "                             each radius given by that value." << std::endl;
    std::cout << "     --algorithm (Hough|GC): Clustering algorithm used (default Hough)." << std::endl;
    std::cout << "     --model_ss val:         Model uniform sampling radius (default 0.01)" << std::endl;
    std::cout << "     --scene_ss val:         Scene uniform sampling radius (default 0.03)" << std::endl;
    std::cout << "     --rf_rad val:           Reference frame radius (default 0.015)" << std::endl;
    std::cout << "     --descr_rad val:        Descriptor radius (default 0.02)" << std::endl;
    std::cout << "     --cg_size val:          Cluster size (default 0.01)" << std::endl;
    std::cout << "     --cg_thresh val:        Clustering threshold (default 5)" << std::endl << std::endl;
}

void
parseCommandLine(int argc, char* argv[])
{
   
   
    //Show help
    if (pcl::console::find_switch(argc, argv, "-h"))
    {
   
   
        showHelp(argv[0]);
        exit(0);
    }

    //Model & scene filenames
    std::vector<int> filenames;
    filenames = pcl::console::parse_file_extension_argument(argc, argv, ".pcd");
    if (filenames.size() != 2)
    {
   
   
        std::cout << "Filenames missing.\n";
        showHelp(argv[0]);
        exit(-1);
    }

    model_filename_ = argv[filenames[0]];
    scene_filename_ = argv[filenames[1]];

    //Program behavior
    if (pcl::console::find_switch(argc, argv, "-k"))
    {
   
   
        show_keypoints_ = true;
    }
    if (pcl::console::find_switch(argc, argv, "-c"))
    {
   
   
        show_correspondences_ = true;
    }
    if (pcl::console::find_switch(argc, argv, "-r")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值