矩阵快速幂

基础知识:(会基础的直接看应用部分)

(1)矩阵乘法

简单的说矩阵就是二维数组,数存在里面,矩阵乘法的规则:A*B=C,其中c[i][j]为A的第i行与B的第j列对应乘积的和。

矩阵相乘代码:

const int N=100;
int c[N][N];
void multi(int a[][N],int b[][N],int n)//n是矩阵大小,n<N
{
    memset(c,0,sizeof c);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        for(int k=1;k<=n;k++)
        c[i][j]+=a[i][k]*b[k][j];
}

矩阵快速幂,便是把快速幂中的n的l次方的n换成矩阵,答案初始化的1换乘单位矩阵,

代码

const int N=10;
int tmp[N][N];
void multi(int a[][N],int b[][N],int n)
{
    memset(tmp,0,sizeof tmp);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        for(int k=0;k<n;k++)
        tmp[i][j]+=a[i][k]*b[k][j];
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        a[i][j]=tmp[i][j];
}
int res[N][N];
void Pow(int a[][N],int n)
{
    memset(res,0,sizeof res);//n是幂,N是矩阵大小
    for(int i=0;i<N;i++) res[i][i]=1;
    while(n)
    {
        if(n&1)
            multi(res,a,N);//res=res*a;复制直接在multi里面实现了;
        multi(a,a,N);//a=a*a
        n>>=1;
    }
}

 

【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频与稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模与扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为与失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材与原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环与电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值