A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
因为机器人只能向右或者向下走,所以当前点可以到达finish的路径数等于右点和下点可以到达finish的路径和。以3*4为例,步数如下表:
6 | 3 | 1 | |
4 | 3 | 2 | 1 |
1 | 1 | 1 | 1 |
public class Solution {
public int uniquePaths(int m, int n) {
if (m == 0 || n == 0) {
return 0;
}
int[][] res = new int[m][n];
for (int i = 0; i < m; i ++) {
res[i][n - 1] = 1;
}
for (int i = 0; i < n; i ++) {
res[m - 1][i] = 1;
}
for (int i = m - 2; i >= 0; i --) {
for (int j = n - 2; j >= 0; j --) {
res[i][j] = res[i + 1][j] + res[i][j + 1];
}
}
return res[0][0];
}
}
还有另一种思路,按照排列组合的思想,总的要走的步数N是 m+n-2,需要向下走的步数K是 m-1,那么可能的选择有 C N K,一个公式搞定,代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
int N = n + m - 2;// how much steps we need to do
int k = m - 1; // number of steps that need to go down
double res = 1;
// here we calculate the total possible path number
// Combination(N, k) = n! / (k!(n - k)!)
// reduce the numerator and denominator and get
// C = ( (n - k + 1) * (n - k + 2) * ... * n ) / k!
for (int i = 1; i <= k; i++)
res = res * (N - k + i) / i;
return (int)res;
}
};
}