62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

因为机器人只能向右或者向下走,所以当前点可以到达finish的路径数等于右点和下点可以到达finish的路径和。以3*4为例,步数如下表:

 631
4321
1111
填的时候从右下角开始,先写一,然后逐次填左和上,有点像扫雷的数字计算规则。根据这个思路,代码如下:

public class Solution {
    public int uniquePaths(int m, int n) {
        if (m == 0 || n == 0) {
            return 0;
        }
        int[][] res = new int[m][n];
        for (int i = 0; i < m; i ++) {
            res[i][n - 1] = 1;
        }
        for (int i = 0; i < n; i ++) {
            res[m - 1][i] = 1;
        }
        for (int i = m - 2; i >= 0; i --) {
            for (int j = n - 2; j >= 0; j --) {
                res[i][j] = res[i + 1][j] + res[i][j + 1];
            }
        }
        return res[0][0];
    }
}
还有另一种思路,按照排列组合的思想,总的要走的步数N是 m+n-2,需要向下走的步数K是 m-1,那么可能的选择有 C N K,一个公式搞定,代码如下:

class Solution {
    public:
        int uniquePaths(int m, int n) {
            int N = n + m - 2;// how much steps we need to do
            int k = m - 1; // number of steps that need to go down
            double res = 1;
            // here we calculate the total possible path number 
            // Combination(N, k) = n! / (k!(n - k)!)
            // reduce the numerator and denominator and get
            // C = ( (n - k + 1) * (n - k + 2) * ... * n ) / k!
            for (int i = 1; i <= k; i++)
                res = res * (N - k + i) / i;
            return (int)res;
        }
    };
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值